Высшая математика и не только
В данном разделе размещены полезные материалы по различным темам элементарной и высшей математики, а также по статистике, эконометрике и экономико-математическому моделированию. Совершенно бесплатно вы можете скачать готовые контрольные работы, рефераты, курсовые различных ВУЗов мира и, кроме того, файлы с учебно-методической информацией по перечисленным предметам.
Внимание!
– Для школьной математики предназначена ветка Элементарная математика
– Обсудить решение задач, получить консультацию или же предложить свою помощь можно в топике Помощь по математике – и только там!
Общий подраздел 228
- ← первая
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- последняя →
-
Не всякая задача комбинаторики решается непосредственным применением основных комбинаторных принципов — правила суммы или произведения, подсчётом числа размещений или сочетаний. В некоторых случаях приходится идти окольным путем и действовать своеобразным «методом решета», который состоит в следующем: для нахождения числа элементов интересующего нас множества мы сначала находим число элементов некоторого большего множества, а потом «просеиваем» нужные элементы, постепенно отбрасывая лишние
Комментариев: 0
-
Добрый день уважаемые посетители форума =) Прохожу урок: Как найти наибольшее и наименьшее значения функции нескольких переменных в ограниченной замкнутой области. Возник вопрос по 5 заданию. Не могу понять почему в системе х = 0. Ведь если y=0 то X это любое число и тогда система имеет бесконечное множество решений ? Спасибо за ваш ответ, скриншот системы уравнений в приложении.
Комментариев: 2
-
Здравствуйте форумчане! Изучаю самостоятельно теорию вероятностей. Столкнулся с непониманием некоторых свойств дисперсии случайной величины, а именно: 1) D(x y) = D(x) + D(y); 2) D(x-y) = D(x) + D(y). Проблем с пониманием, почему вышел такой результат нету (следствие из определения дисперсии), но я совершенно не могу прочувствовать этот результат, почему он именно такой. Кому не сложно, объясните пожалуйста.
Комментариев: 1
- ← первая
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- последняя →
Найти константу минимизирующую среднюю...
Добрый день. Пытаюсь решить задачу: Найти константу минимизирующую среднюю абсолютную ошибку (MAE). Правильный ответ, это медиана, но как это доказать математически, ведь производной в нуле у функции модуля нет... По сути надо решить уравнение: (1/n × сумму [ y - y (prog)] )' = 0 ( среднее значение от модуля разности у(реального) и у(прогноза). От всего выражения берём производную и приравниваем к нулю). Но как его решить если модуль не дифференцируемая... далее
Комментариев: 3