Уравнения переноса. Схемы бегущего счёта
Выбор региона:
-
Все регионы
-
Россия
- Москва
- Санкт-Петербург
- Адыгея
- Башкортостан
- Бурятия
- Алтай
- Дагестан
- Ингушетия
- Кабардино-Балкария
- Калмыкия
- Карачаево-Черкесия
- Карелия
- Коми
- Марий Эл
- Мордовия
- Саха (Якутия)
- Северная Осетия
- Татарстан
- Тыва (Тува)
- Удмуртская Республика
- Хакасия
- Чеченская Республика
- Чувашская Республика
- Алтайский край
- Краснодарский край
- Красноярский край
- Приморский край
- Ставропольский край
- Хабаровский край
- Амурская область
- Архангельская область
- Астраханская область
- Белгородская область
- Брянская область
- Владимирская область
- Волгоградская область
- Вологодская область
- Воронежская область
- Ивановская область
- Иркутская область
- Калининградская область
- Калужская область
- Кемеровская область
- Камчатская область
- Кировская область
- Костромская область
- Курганская область
- Курская область
- Ленинградская область
- Липецкая область
- Магаданская область
- Московская область
- Мурманская область
- Нижегородская область
- Новгородская область
- Новосибирская область
- Омская область
- Оренбургская область
- Орловская область
- Пензенская область
- Пермский край
- Псковская область
- Ростовская область
- Рязанская область
- Самарская область
- Саратовская область
- Сахалинская область
- Свердловская область
- Смоленская область
- Тамбовская область
- Тверская область
- Томская область
- Тульская область
- Тюменская область
- Ульяновская область
- Челябинская область
- Ярославская область
- Еврейская авт. область
- Ненецкий АО
- Ханты-Мансийский АО
- Чукотский АО
- Ямало-Ненецкий АО
- Забайкальский край
- Украина
- Белоруссия
- Грузия
- Туркмения
- Узбекистан
- Таджикистан
- Молдавия
- Киргизия
- Казахстан
- Армения
- Азербайджан
- США
- Израиль
- Чехия
- Германия
- Литва
- Эстония
- Латвия
- Другие регионы
- Без региона
-
Россия
Для расчета разрывных решений уравнений гиперболического типа предлагаются новые гибридные разностные схемы. В них бикомпактная схема третьего порядка аппроксимации по времени и четвертого по пространству монотонизируется за счет нескольких схем-партнеров первого порядка аппроксимации по времени, а именно “явного уголка”, бикомпактных схем второго и четвертого порядков аппроксимации по пространству. Их суммарная область монотонности охватывает все числа Куранта. Построен алгоритм автоматического выбора наиболее подходящей схемы-партнера. Дано строгое обоснование механизму переключения между схемами высокого и низкого порядков аппроксимации. Все используемые методы могут быть эффективно реализованы методом бегущего счета. Предлагаемые гибридные схемы были проверены на модельной двумерной задаче о взрыве в идеальном газе.
- Файл: 5585_f_41_shema-begushego-scheta.pdf
- Содержание файла: Лекции
|