Переход к полярным координатам





Подскажите, куда будет стремиться "r", при переходе к полярным координатам, в вычислении пределов функции нескольких переменных, если переменные, например, "Х"  и "У"  будут стремиться не к одному значению, а к разным. Во всех примерах на сайте рассмотрены варианты только для переменных стремящихся к нулю одновременно. А как быть, если одна переменная в пределе стремится к "5",а вторая к "3", Куда в подобном случае будет стремиться  "r" ? И возможно ли более четко формализовать применение перехода к полярным координатам в пределах ФНП ? Возможно ли сразу что то увидеть в пределе,что подскажет,что надо переходить,а не проверять предел, например, вычислением семейства прямых y=kx.

  • Учебное заведение: самоучение.

Всего: 1 комментарий.
Добавить комментарий

Александр Емелин    19.08.2018 в 16:14
Здравствуйте, Алексей, спасибо за вопросы.

В случае если, например, x -> 5, y -> 3 можно перейти к новым переменным:
u= x-5, v= y-3, и тогда u -> 0, v -> 0

Формализовать переход к полярной системе координат чётко - весьма затруднительно, т.к. существует великое разнообразие путей к предельной точке. Вы можете сами взять в руки карандаш и нарисовать произвольный маршрут в плоскости XOY - это может быть любая кривая или даже множество изолированных точек.

"Возможно ли сразу что то увидеть в пределе..." - здесь только личный опыт, после сотни-другой прорешанных пределов вы часто будете сразу (или почти сразу) понимать, как нужно решать тот или иной предел :)