Научись решать за один день!

Блиц-курс – Кратные и криволинейные интегралы

Научись решать за пару дней!



1.1.2. Как решить двойной интеграл? Повторные интегралы


Для того чтобы вычислить двойной интеграл, его нужно свести к так называемым повторным интегралам. Сделать это можно двумя способами. Наиболее распространён следующий способ:

Вместо знаков вопроса необходимо расставить пределы интегрирования. Причём одиночные знаки вопроса  у внешнего интеграла – это числа, а двойные знаки вопроса  у внутреннего интеграла – это функции одной переменной .

Откуда взять пределы интегрирования? Они зависят от того, какая в условии задачи дана область . Область  представляет собой обычную плоскую фигуру, с которой вы неоднократно сталкивались, в частности, при вычислении площади плоской фигуры или вычислении объёма тела вращения. Очень скоро вы узнаете, как правильно расставлять пределы интегрирования.

После того, как переход к повторным интегралам осуществлён, следуют непосредственно вычисления: сначала берётся внутренний интеграл , а потом – внешний. Друг за другом. Отсюда и название – повторные интегралы.

Грубо говоря, решение сводится к вычислению двух определённых интегралов. Как видите всё не так сложно и страшно, и если вы совладали с «обыкновенным» определённым интегралом, что мешает разобраться с двумя интегралами?!

Второй способ перехода к повторным интегралам встречается несколько реже:

Что поменялось? Поменялся порядок интегрирования: теперь внутренний интеграл берётся по «икс», а внешний – по «игрек». Пределы интегрирования, обозначенные звёздочками – будут другими! (в общем случае). Одиночные звёздочки внешнего интеграла – это числа, а двойные звёздочки внутреннего интеграла – это обратные функции , зависящие от «игрек».

Какой бы мы ни выбрали способ перехода к повторным интегралам,
окончательный ответ обязательно получится один и тот же:

Пожалуйста, запомните это важное свойство, которое можно использовать, в том числе, для проверки решения.

1.1.3. Алгоритм решения двойного интеграла

1.1.1. Что значит решить двойной интеграл?

| Оглавление |



Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин




© mathprofi.ru / com, 2010-2024, Высшая математика – просто и доступно!