Научись решать за один день!

Экстремально короткий курс по интегралам

Научись решать за ОДИН день!



1.9. Объём тела вращения


Рассмотрим ещё одно распространённое приложение определённого интеграла.

Представьте некоторую плоскую фигуру на координатной плоскости. Представили? ... интересно, кто что представил… :) Её площадь мы уже находили. Но, кроме того, данную фигуру можно ещё и вращать: вокруг оси  или вокруг оси .
В рамках данного курса я остановлюсь на стандартном варианте:

Пример 17
Вычислить объем тела, полученного вращением фигуры, ограниченной линиями ,  вокруг оси  .

Решение: как и в задаче на нахождение площади, решение начинается с чертежа плоской фигуры. Да, с точно такого же чертежа:

Искомая плоская фигура заштрихована серым цветом, именно она и вращается вокруг оси . В результате получается такое… загадочное яйцо.

Объем тела вращения можно вычислить по формуле:
, где  – неотрицательная или неположительная функция, график которой ограничивает плоскую фигуру на отрезке . Заметьте, что здесь не нужно думать, над осью расположена криволинейная трапеция или под осью, т.к. возведение в квадрат стирает разницу между функциями  и .

В нашей задаче:

Интеграл почти всегда получается простой, главное, быть ВНИМАТЕЛЬНЫМ.

Ответ:  (кубических единиц - «кубиков» единичного объема)

Напоминаю, что , обычно принимают  либо .

Пример 18
Найти объем тела, образованного вращением вокруг оси  фигуры, ограниченной линиями , ,

Тренируемся и переходим к более содержательному случаю:

Пример 19
Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями , ,  и .

Решение: изобразим на чертеже плоскую фигуру, ограниченную линиями , , , , не забывая, что уравнение  задаёт ось :

Искомая фигура заштрихована синим цветом. При её вращении вокруг оси  получается такой сюрреалистический бублик с четырьмя углами. Объем этого бублика вычислим как разность объёмов с помощью стандартной формулы .

1) Фигура, обведённая красным цветом ограничена сверху прямой , поэтому:

2) Фигура, обведенная зеленым цветом ограничена сверху прямой , поэтому:

3) Объем искомого тела вращения:

Ответ:

Решение можно оформить и короче, примерно в таком духе:
., но, как вы уже поняли, за скорость приходится расплачиваться повышенным риском допустить ошибку.

И ещё хочу вас предостеречь от оценки результата «на глазок». При вычислении объёмов этого делать НЕ НАДО. Дело в том, что человек склонен неверно оценивать объёмы. Посмотрите на плоскую фигуру в прорешанной задаче – она вроде бы невелика по площади, а объем тела вращения составил чуть более 50 «кубиков», что кажется слишком большим. Кстати, среднестатистический человек за всю свою жизнь выпивает жидкость объемом с комнату площадью 18 квадратных метров, что, наоборот, кажется слишком маленьким объемом.

И после лирического отступления уместно решить изящную и, конечно же, важную;) задачу:

Пример 20
Вычислить объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями , ,

Дополнительные примеры можно найти в соответствующей статье сайта, в том числе вращение вокруг оси , ну а сейчас есть более срочный материал:

1.10. Интеграл от чётной функции по симметричному относительно нуля отрезку

1.8. Как вычислить площадь фигуры с помощью определённого интеграла?

| Оглавление |



Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин




© mathprofi.ru / com, 2010-2024, Высшая математика – просто и доступно!