1. Как построить доказательство?

Шаблон 1.1 Принадлежность элемента множеству.

Пусть задано множество A. Чтобы доказать, что $x \in A$, покажите, что x обладает свойством, определяющим принадлежность x

Пример.]

 $A = \{ n: n \in \mathbb{N} \ \ u \ \ n = 3k + 5 \ ,$ для некоторых $k \in \mathbb{N} \}$ Можно ли утверждать, что $23 \in A$?

Решение.

Чтобы показать, что 23 \in A, мы должны найти натуральное число k_0 такое, что

$$23 = 3k_0 + 5$$
,

поскольку каждый элемент множества A имеет вид 3k+5 для некоторого $k \in \mathbb{N}$. Чтобы выяснить, существует ли такое k, мы просто решим уравнение относительно k_0 и проверим, получился ли корень натуральным числом.

$$3k_0 + 5 = 23 \to k_0 = 6$$

Следовательно, существует такое $k = k_0 = 6$ и $3 * 6 + 5 = 23 \in A$.

Шаблон1.2 Включение множества.

Чтобы доказать, что одно множество является подмножеством другого ($A \subseteq B$), покажите, что каждый элемент x множества A также входит в множество B.

Пример.

$$A = \{n: n=2k+5$$
 для некоторых $k \in \mathbb{N} \}$ и $B = \{n: n=2j+1$ для некоторых $j \in \mathbb{N} \}$ Верно ли, что $A \subseteq B$?

Решение.

В: 1, 3, 5, 7, 9, 11 - видно, что разница в первых членах.

Чтобы доказать, что $A \subseteq B$, мы должны взять произвольный элемент множества A, скажем, что $n=2k_0+5$ для некоторого $k_0\in \mathbb{N}$, а затем показать, что его можно записать в виде 2j+1 для некоторого $j\in \mathbb{N}$. Тогда $2k_0+5=2j+1\in B$. Выразим j через k_0

$$2j+1=2k_0+5 \rightarrow j=k_0+2$$
 $2k_0+5=2(k_0+2)+1$ при $k_0+2\in\mathbb{N}$

Видим, $k_0 + 2 \in \mathbb{N}$

Таким образом, поскольку произвольный элемент A является элемент B, то $(A \subseteq B)$.

Шаблон 1.3 Отрицание включение множества.

Чтобы доказать, что одно множество не является подмножеством другого (A не⊆ B), покажите, что некоторый элемент x множества A не входит в B.

Пример.]

$$A \ \{ n: n \in \mathbb{Z} \ u \ n = 2k^2 - 3 \ для некоторых $k \in \mathbb{N} \}$
 U
 $B \ \{ n: n \in \mathbb{Z} \ u \ n = j^2 + 3 для некоторых $j \in \mathbb{N} \}$$$$

Докажите, что А не⊆ В.

Решение.

Выпишем несколько элементов $A = \{-3, -1, 5, 15, 29 ...\}$ и $B = \{3, 4, 7, 12, 19 ...\}$ один из очевидных кандидатов это -3, поскольку $-3 \in A$ и $-3 \notin B$. Нам нужно показать, что существует некоторое фиксированное целое число вида $2k_0^2 - 3$, где $k_0 \in \mathbb{N}$, которое нельзя представить в виде $j^2 + 3$ ни при каком выборе $j \in \mathbb{N}$. Если бы такое представление было возможно, мы получили бы равенство $2k_0^2 - 3 = j^2 + 3$. В случае $k_0 = 0$ (для того, чтобы элемент -3 входил в B, число j должно было бы удовлетворить уравнению $-3 = j^2 + 3$ или $j^2 + 6 = 0$, поскольку таких j не существует, то -3 не $\subseteq B$.

Шаблон 1.4 Собственное включение множества

Чтобы доказать, что одно множество является собственным подмножеством другого ($A \subset B$), вначале докажите, что $A \subseteq B$, а затем покажите, что существует некоторый элемент х множества B, который не входит в A.

Пример.

$$A=\{\ n\in\mathbb{N}:\ n\ge 2\$$
и $n=4j-5\$ для некоторых $j\in\mathbb{N}\ \}$ и $B=\{\ n\in\mathbb{N}:\ n\ge 0\$ и $n=2k+1\$ для некоторых $k\in\mathbb{N}\ \}$ Докажите, что $A\subset B$.

Решение.

Чтобы доказать, что $A \subseteq B$, мы должны показать, что каждый элемент A является элементом B, пусть $n=4j_0-5$ при некотором фиксированном $j_0\in \mathbb{N}$ — произвольный элемент A. Чтобы показать, что $n\in B$, мы должны показать, что n=2k+1 для некоторых $k\in \mathbb{N}$. Мы выясним, возможно ли такое представление, решив уравнение

$$2k + 1 = 4j_0 - 5 \rightarrow k = 2j_0 - 3$$

заметим, что $2j_0-3\geq 0$, т.к. $4j_0-5\geq 2 \to j_0\geq 2$

поскольку $2 * (2j_0 - 3) + 1 = 4j_0 - 5$, каждый элемент A входит в B.

Для $0 \in \mathbb{N}$ мы получим $2 * 0 + 1 = 1 \in B$.

Если бы $1 \in A$, то 1 = 4j - 5 для некоторых $j \in \mathbb{N}$. Решив это уравнение, получим $j = 2/3 \notin \mathbb{N}$ таким образом подходящих j не существует поэтому $1 \in B$, и $1 \notin A$, значит $A \subset B$.

Шаблон 1.5 Равенство множеств

Чтобы доказать, что A = B, для множестве A и B, докажите, что $A \subseteq B$ <u>и</u> $B \subseteq A$.

Пример.]

$$A=\{\ n: n=2j\$$
для некоторых $j\in \mathbb{N}\ \}$ и $B=\{\ n: n=2k+2$ для некоторых $k\in \mathbb{Z}$ и $k\geq -1\ \}$ Докажите, что $A=B$.

Решение.

Чтобы показать, что произвольный элемент A, скажем $2j_0$ для некотор. $j_0 \in \mathbb{N}$, является элементом B, мы должны найти число $k \in \mathbb{Z}$ такие, что $2k + 2 = 2j_0$ и $k \ge -1$.

Решив это уравнение относительно k, получим $k = j_0 - 1$.

Поскольку $j_0 \ge 0$, $k = j_0 - 1 \ge -1$ и $2k + 2 \in B$.

Чтобы показать, что произвольный элемент B, скажем, $2k_0+2$ для некотор. $k_0 \ge -1$ $k_0 \in \mathbb{Z}$, является элементом A, мы должны найти число $j \in \mathbb{N}$ такое, что $2j=2k_0+2$. Отсюда следует, что если $2k_0+2-$ элемент A, то число j должно удовлетворять уравнению $j=k_0+1$, поскольку $k_0 \ge -1$, мы получаем $k_0+1\ge 0$ и значит, k_0+1

определяет элемент A. Из $A \subseteq B$ и $B \subseteq A$ следует, что A=B.

Шаблон 1.6 Неравенство множеств

Чтобы показать, что для множеств A и B выполняется соотношение $A \neq B$, докажите, что A не $\subseteq B$ или B не $\subseteq A$.

Пример.

$$A=\{\ n:n\in\mathbb{N}\$$
и $n=4j-3$ для некоторых $j\in\mathbb{N}\ \}$ и $B=\{\ n\in\mathbb{N}:n=2k^2-3$ для некоторых $k\in\mathbb{N}\ \}$ Докажите, что $A\neq B$.

Решение.

Чтобы доказать неравенство $A \neq B$, достаточно отыскать элемент A, который не является элементом B. Мы покажем, что 1 — такой элемент.

Мы можем записать $1 = 2k^2 - 3 \rightarrow k^2 = 2$, отсюда видно, что $k \notin \mathbb{N}$.

В то же время 1 = 4 * 1 - 3 выполнено при j = 1 т. е. $1 \in A \rightarrow A \neq B$.

Шаблон 1.7 Импликации и "тогда и только тогда, когда"

Чтобы доказать утверждения "если а, то b" и "а тогда и только тогда, когда b", используйте один из способом:

Способ 1: Чтобы доказать "если а, то b" предположите а и выведите b

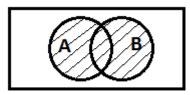
Способ 2: Чтобы доказать "а тогда и только тогда, когда b" докажите "если a, то b', а затем "если b, то a".

Запись "если a, то b" (=>), "если b, то a" (<=), "а тогда и только тогда, когда b" (<=>)

2. Операции над множествами: объединение и пересечение.

Определение 1.

А и В - два множества. Объединением А \cup В множеств А и В называется множество { x: x \in А или x \in В }



Р. S. Поясним значение слова "или" здесь.

Когда математики говорят $x \in A$ или $x \in B$, то они обычно имею в виду, что справедливо $x \in A$, или же $x \in B$, или оба этих утверждения. "Или" в таком смысле называется включенным "или".

Теорема 1.]

А, В и С - множества. Тогда

- (a) $A \cup A = A$;
- (b) $A \subseteq A \cup B$ u $B \subseteq A \cup B$
- (c) $A \cup B = B \cup A$ (коммутативный закон объединения)
- (d) $A \cup (B \cup C) = (A \cup B) \cup C$ (ассоциативный закон объединения)

Доказательство (с)

Следуя шаблону доказательства равенства двух множеств, докажем, что (i) $A \cup B \subseteq B \cup A$ и (ii) $B \cup A \subseteq A \cup B$.

В части (i) воспользуемся шаблоном доказательства включения множества и докажем, что для любого $x \in A \cup B$ выполняется $x \in B \cup A$.

Предположим, что $x \in A \cup B$. Тогда (ia) $x \in A$ или (ib) $x \in B$. В случае (ia) $x \in A$, поэтому по <u>определению 1</u> $x \in B \cup A$. В случае (ib) $x \in B$, поэтому по <u>определению 1</u> $x \in B \cup A$. Часть (i) доказана. Аналогично проводится доказательство части (ii).

Определение 2.]

А и В - два множества. Пересечением А \cap В множеств А и В называется множество $\{x: x \in A \ \ u \ \ x \in B\}$

Теорема 2.

А, В и С - множества. тогда.

- (a) $A \cap B = A$
- (b) $A \cap B \subseteq A$ и $A \cap B \subseteq B$
- (c) $A \cap B = B \cap A$
- (d) $A \cup (B \cup C) = (A \cap B) \cap C$

Доказательство (с) следует шаблону 1.5 (равенство множеств).

Докажем, что (i) $A \cap B \subseteq B \cap A$. В части (i) воспользуемся шаблоном 1.2, то есть предположим, что $x \in A \cap B$, и покажем, что $x \in B \cap A$

] $x \in A \cap B$. Тогда $x \in A$ и $x \in B$. Совершенно аналогично можно сказать, что $x \in B$ и $x \in A$, так как слово "и" не предполагает никакого порядка поэтому $x \in B \cap A$. Аналогично проводится доказательство части (ii).

<u>Теорема 3.</u> (Дистрибутивные законы)

- (a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ (дистрибутивные закон объединения)
- (b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (дистрибутивный закон пересечения) Доказательство. Доказательство предлагается в качестве уравнения.

Определение 3.]

А и В - множества. Тогда А и Б - пересекающиеся множества, если $A \cap B = \emptyset$

<u>Теорема 4.</u>]

А, В и С - множества, тогда

- (a) если $A \subseteq B$ или $A \subseteq C$, то $A \subseteq B \cup C$;
- (b) если $B \subseteq A$ и $C \subseteq A$, то $B \cup C \subseteq A$;
- (c) если $A \subseteq B$ и $A \subseteq C$, то $A \subseteq B \cap C$;
- (d) если $B \subseteq A$ или $C \subseteq A$, то $B \cap C \subseteq A$.

Доказательство (a) $A \subseteq B$ или $A \subseteq C$.

<u>Случай 1</u>: А ⊆ В. Следуя шаблону 1.2 (включение множеств) докажем, что одно множество является подмножеством другого. Покажем, что каждый элемент множества А является также элементом множества В ∪ С.

] $x \in A$. Наша цель - показать , что $x \in B \cup C$. Поскольку $x \in A$. и $A \in B$, мы получаем $x \in B$. Но $B \cup C = \{x : x \in B \text{ или } x \in C\}$ поэтому $x \in B \cup C$.

<u>Случай 2</u>: А ⊆ С. Доказательство аналогично случаю 1.

<u>Теорема 5.</u> (Законы поглощения)]

А и В - множества, тогда

$$A \cup (A \cap B) = A$$

Доказательство. По шаблону 1.5 докажем, что $A \cup (A \cap B) \subseteq A$ и $A \subseteq A \cup (A \cap B)$. Для доказательства первой части утверждения заметим, что $A \subseteq A$ согласно теореме 1 ((a) $A \subseteq A$; (b) $\emptyset \subseteq A$) и $A \cap B \subseteq A$ согласно теореме 2 (b). По теореме 4 (b) из этих двух соотношений следует, что $A \cup (A \cap B) \subseteq A$. При доказательстве второй части мы исходим из соотношения $A \subseteq A$, откуда по теореме 4 (a) получаем $A \subseteq A \cup (A \cap B)$.

Обобщенные объединения и пересечения.

Определение 4.] х - множество многочленом. Тогда

$$\bigcup X = \{x : x \text{ содержится в некотором множестве входит в X}\}$$

 $\bigcap X = \{x : x \text{ содержится в каждом из множеств, входящем в X} \}$

Если $X = \{X_0, X_1, \dots, X_n, \dots\}$ иначе говоря если элементы X пронумерованы натуральными числами, то

$$\bigcup_{i=0}^{\infty} X_i = X_0 \cup X_1 \cup ... \cup X_n \cup ...,$$

$$\bigcap_{i=0}^{\infty} X_i = X_0 \cap X_1 \cap ... \cap X_n \cap$$

Разность множеств и дополнение множеств связаны с объединением и пересечением законами де Моргана.

Определение 5.]

А и В - множества. Разностью А — В множеств А и В называется множество $\{x: x \in A \ \ u \ \ x \notin B\}$

Разность A - B еще называют <u>относительной</u>. ($U - A - \underline{\text{абсолютной}}$).

Теорема 6.

А и В - множества. Тогда:

- (а) множества A B и B A не пересекаются; множества A B и $A \cap B$ не пересекаются; множества $A \cap B$ и B A не пересекаются.
- (b) $A = (A B) \cup (A \cap B)$;
- (c) $A \cup B = (A B) \cup (A \cap B) \cup (B A)$;
- (d) $A \subseteq B$ тогда и только тогда, когда $A B = \emptyset$.

В случае, когда имеется универсальное множество, а А-подмножество U, может быть определена ещё одна операция теории множеств.

Определение 6.]

U - универсальное множество, а A - подмножество U. Дополнением \overline{A} множества A называется множество

$$\{x: x \in U \mid u \mid x \notin A\}$$

Иногда, чтобы подчеркнуть, что U - универсальное множество, \overline{A} называют абсолютной разностью.

Теперь можно переформулировать определение 5 в виде

$$A - B = A \cap \overline{B}$$

<u>Теорема 7</u>.]

U - универсальное множество, А и В - подмножества U. Тогда:

- (a) $\overline{\overline{A}} = A$ ($\overline{\overline{A}}$ является дополнением $\overline{\overline{A}}$);
- (b) $A \subseteq B$ тогда и только тогда, когда $\overline{B} \subseteq \overline{A}$;
- (c) A = B тогда и только тогда, когда $\overline{A} = \overline{B}$ Доказательство:
- (а) покажем, что (і) $\overline{A} \subseteq A$ и (іі) $A \subseteq \overline{A}$. Чтобы доказать (і), предположим, что $x \subseteq \overline{A}$. Чтобы доказать (іі), предположим, что $x \subseteq A$. Тогда $x \notin \overline{A}$ и $x \in U$. Поэтому $x \in \overline{A}$. (b) (=>) Покажем, что если $A \subseteq B$, то $\overline{B} \subseteq \overline{A}$. Мы докажем это утверждение от противного (шаблон 1.3). Предположим, что для некоторых A и B универсального множества U $A \subseteq B$, и \overline{B} не $\subseteq \overline{A}$. и придем к противоречию. Поскольку \overline{B} не $\subseteq \overline{A}$, существует некоторый элемент $x \in \overline{B}$, но $x \notin \overline{A}$, т.е. $x \in A$. Поскольку $A \subseteq B$, то $x \in B$. Но в силу сделанного предположения $x \in \overline{B}$, следовательно $x \in B$ в чём и состоит противоречие.

Компьютерное представление множеств.

] U={1,2,3,4,5,6} - множество, и] X \subseteq U. Побитовое представление множества X - это шестизначное двоичное число $x_1x_2x_3x_4x_5x_6$, где бит x_i при $1 \le i \le 6$ определяются как

$$x_i = \left\{ egin{array}{l} 1, \operatorname{если} i \in X \\ 0, \operatorname{если} i \notin X \end{array} \right.$$

Например, если B={2,3,6}, то B=011001. Операции объединения, пересечения, дополнения и разности могут быть заданы при помощи операторов UNION, INTEP, COMP и DIFF, которые побитово действуют на двоичных числах.

]
$$B, C \subseteq U$$
 причем $B = b_1b_2b_3b_4b_5b_6$, а $C = c_1c_2c_3c_4c_5c_6$

Определим UNION (B,C) =
$$x_1x_2x_3x_4x_5x_6$$
, где при $1 \le i \le 6$ $x_i = \left\{ egin{array}{l} 1 \text{, если } b_i = 1 \text{ или } c_i = 1 \\ 0 \text{, в противном случае} \end{array} \right.$

Определим INTER (B,C) = $x_1x_2x_3x_4x_5x_6$, где при $1 \le i \le 6$ $x_i = \begin{cases} 1, \text{если } b_i = 1 \text{ и } c_i = 1 \\ 0, \text{в противном случае} \end{cases}$

Определим СОМР (B) = $x_1x_2x_3x_4x_5x_6$, где при $1 \le i \le 6$ $x_i = \begin{cases} 1, \text{если } b_i = 0 \\ 0, \text{в противном случае} \end{cases}$

Определим DIFF (B,C) = $x_1x_2x_3x_4x_5x_6$, где при $1 \le i \le 6$ $x_i = \begin{cases} 1, \text{если } b_i = 1, c_i = 0 \\ 0, \text{в противном случае} \end{cases}$

Пример.]

 $B = \{1,2,3,4,5\}$ и $C = \{3,4,5,6,7,8\}$ В и C подмножества $U = \{1,2,3,4,5,6,7,8,9\}$

Решение.

 $B \cup C = \{1,2,3,4,5,6,7,8\}$

 $B \cap C = \{3,4,5\}$

 $U - B = \{6,7,8,9\}$

 $B - C = \{1,2\}$

UNION (B,C) = 1111111110

INTER(B,C) = 001110000

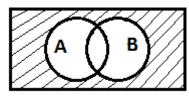
COMP(B) = 000001111

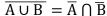
COMP(C) = 110000001

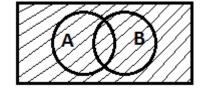
DIFF(B,C) = 1100000000

Законы де Моргана.

Связь объединения, пересечения и дополнения







 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Теорема 8. (Законы де Моргана)

- (a) $\overline{A \cup B} = \overline{A} \cap \overline{B}$ (закон для объединения)
- (b) $\overline{A \cap B} = \overline{A} \cup \overline{B}$ (закон для пересечения)

Доказательство (а)

- (a) Покажем, что (i) $(\overline{A \cup B}) \subseteq \overline{A} \cap \overline{B}$ и (ii) $\overline{A} \cap \overline{B} \subseteq (\overline{A \cup B})$
- (i) возьмем произвольный элемент $x \in (\overline{A \cup B})$. В силу того, что $x \in U (\overline{A \cup B})$, мы делаем вывод, что $x \notin A \cup B$. Значит $x \notin A$ и $x \notin B$. Значит $x \in U A = \overline{A}$ и $x \in U B = \overline{B}$. Поэтому следует $x \in \overline{A} \cap \overline{B}$.
- (ii) возьмем произвольный элемент $x \in \overline{A} \cap \overline{B}$. Тогда $x \in \overline{A}$ и значит, $x \notin A$, кроме того $x \in \overline{B}$, значит $x \notin B$, поэтому $x \in \overline{A \cup B}$. (b) для читателя.

Определение 7.]

А и В - множества. Множество

$$A \triangle B = (A - B) \cup (B - A)$$

называется симметричной разностью множеств А и В.

Теорема 9.

- (a) Для любого множества A выполняется $A \oplus \emptyset = A$
- (b) Для любого множества A выполняется $A \oplus A = \emptyset$
- (c) Для любых двух множеств A и B выполняется A \bigoplus B = B \bigoplus A Доказательство

(c)
$$A \oplus B = (A - B) \cup (B - A) = (B - A) \cup (A - B) = B \oplus A$$

Теорема 10.

$$A \oplus (B \oplus C) = (A \oplus B) \oplus C$$

Доказательство (длинное).

Логика высказываний.

Теорема 8 (b) тесно связана с одной темой в логике высказываний, а именно тем, как соотносятся высказывания вида "если-то", его конверсия, инверсия и контрапозиция.

Из элементов высказывания "если a, то b" можно составить другие высказывания, такие как "если б, то a". Можно поставить вопрос: если первое высказывания истинно, то что можно сказать об истинности второго?

Рассмотрим высказывания:

"Если Джорж — лошадь, то Джорж — животное"

Сформулируем его инверсию:

"Если Джорж — не лошадь, то Джорж — не животное"

Сформулируем его конверсию:

"Если Джорж — животное, то Джорж - лошадь"

И, наконец, сформулируем его контрапозицию:

"Если Джорж — не животное, то Джорж — не лошадь"

И само высказывание и его контрапозиция - истинны, в то время как инверсия и конверсия могут оказаться ложными (это зависит от того, кто такой Джорж).

Рассмотрим ещё один пример:

Утверждение: "Если мой кот — лошадь, то он — животное"

Инверсия: "Если мой кот — не лошадь, то он — не животное"

Конверсия: "Если мой кот —, то он — лошадь"

Контрапозиция: "Если мой кот — не животное, то он — не лошадь"

Как называют эти два примера, высказывания типа "если-то" эквивалентны своим контрапозициям.

Используя методы математической логики, можно показать, что и в общем случае высказывание истинно тогда и только тогда, когда истинна его контрапозиция. При построении доказательств бывает легче работать с контрапозицией высказывания, чем с ним самим. Доказательство контрапозиции нужного высказывания называется непрямым доказательством. В примере с котом и лошадью утверждения и его контрапозиция — тавтология, а инверсия и конверсия — ложны. Как правило, высказывание вида "если-то" не эквивалентно своей инверсии и конверсии но конверсия и инверсия всегда эквивалентны друг другу.

Новые шаблоны доказательств.

Первую из новых идей - разбор случаем - мы использовали в теореме 4.

Шаблон 1.8. Доказательство разбором случаев

Для того, чтобы доказать теорему разбором случаев,

- 1) перечислим все возможные случае, описывающие все обязательства, в которых осуществляется предположение теоремы;
- 2) докажите утверждение теоремы для каждого случая;

Шаблон 1.9. Опровержение при помощи контрапримера

Чтобы опровергнуть утверждение, начинающееся словами "для каждого $x \in A$ ", найдите такой элемент x, для которого утверждение не выполняется.

В теории 7 (b) утверждается, что если $A \subseteq B$, то $\overline{B} \subseteq \overline{A}$. Для доказательства мы предположили, что $A \subseteq B$ и \overline{B} не $\subseteq \overline{A}$, а затем показали, что это предположение приводит к противоречию. Такой метод доказательства описан в шаблоне 1.10.

Шаблон 1.10. Доказательство от противного

Чтобы доказать утверждение (а) от противного используйте один из двух способов.

Способ 1:

Предположите, что (a) ложно и докажите, что некоторое другое утверждение (b) ложно, в то время как известно, что утверждение (b) истинно

Способ 2:

Предположите, что утверждение (a) ложно. Для некоторого утверждения (b) докажите, что утверждение (b) оказывается одновременно и истинным и ложным.

Утверждение теоремы 7 (b) можно интерпретировать так, что утверждение и его контрапозиция имеют одинаковые значения истинности. Например, выражение " $A \subseteq B$ " можно понимать как "если $x \in A$, то $x \in B$ ". Аналогично, " $\overline{B} \subseteq \overline{A}$ " можно понимать как "если $x \notin B$, то $x \notin A$ ". Как можно доказать истинность или ложность утверждения "еслито" когда известны истинности его контрапозиции? Приблизительно так, как мы доказывали теорему 7(b). Суть этого метода изображена в шаблоне 1.11.

Шаблон 1.11. Непрямое доказательство (обратное доказательство)

Чтобы доказать теорему, используя непрямое доказательство, докажите утверждение "если р, то q", доказав "если не q, то не р".