#### Ю.А. Чаповский

## Лекции по функциональному анализу

Группы: КА - 63, 64

III курс, семестр 5

Киев-2018

<sup>©</sup> Ю.А. Чаповский

# Оглавление

| Лин | нейные нормированные пространства      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1 | Определение. Примеры                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1.2 | Открытые и замкнутые множества         | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.3 |                                        | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.4 |                                        | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.5 |                                        | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.6 |                                        | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                        | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | •                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                        | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.7 |                                        | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                        | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                        | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |                                        | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.8 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Лот | полнительные залачи                    | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| , , | · ·                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 1.1<br>1.2<br>1.3<br>1.4<br>1.5<br>1.6 | <ol> <li>Определение. Примеры</li> <li>Открытые и замкнутые множества</li> <li>Последовательности в ЛНП</li> <li>Полнота. Банаховые пространства.</li> <li>Плотные множества</li> <li>Теоремы Вейерштрасса</li> <li>Аппроксимация периодических функций тригонометрическими многочленами</li> <li>Аппроксимация непрерывных функций многочленами</li> <li>Компактные множества</li> <li>Общие положения</li> <li>Компактные подмножества С([a, b])</li> <li>Толи Компактные подмножества Пеано</li> </ol> |

## ОГЛАВЛЕНИЕ

| Предметный указатель | 123 |
|----------------------|-----|
| Литература           | 125 |

## Глава 1

Линейные нормированные пространства

## 1.1 Определение. Примеры

E — линейное пространство над полем  $\mathbb{R}$  или  $\mathbb{C}$ , которое обозначается через  $\mathbb{K}$ . Также используются обозначения  $\mathbb{R}_+ = [0, +\infty)$  и  $\overline{\mathbb{R}}_+ = \mathbb{R}_+ \cup \{+\infty\}$ .

**Определение 1.1.1.** Преднормой или полунормой на линейном пространстве E называется функция  $\|\cdot\|: E \to \mathbb{R}$ , которая удовлетворяет следующим свойствам:

- (i)  $\|\boldsymbol{x}\| \geq 0$  для всех  $\boldsymbol{x} \in E$ ;
- (ii)  $\|\lambda \boldsymbol{x}\| = |\lambda| \|\boldsymbol{x}\|$  для всех  $\boldsymbol{x} \in E$  и  $\lambda \in \mathbb{K}$ ;
- (iii) (неравенство треугольника)  $\|x + y\| \le \|x\| + \|y\|$  для любой пары элементов  $x, y \in E$ .

Если выполнено также условие, что

(iv)  $\|x\| = 0$  только для x = 0,

то преднорма  $\|\cdot\|$  называется *нормой*. Линейное пространство E с заданной на нем нормой  $\|\cdot\|$  называется *линейным нормированным пространством* и обозначается  $(E,\|\cdot\|)$ .

 $\Pi pumep$  1.1.2. Для линейного пространства  $E=\mathbb{K}$  ( $\mathbb{K}=\mathbb{R}$  или  $\mathbb{K}=\mathbb{C}$ ) над полем  $\mathbb{K}$ 

$$||x|| = |x|$$

является нормой.

- lacktriangle Рассмотрим случай  $\mathbb{K} = \mathbb{R}$ . (Все остается верно и для  $\mathbb{K} = \mathbb{C}$ ).
  - (i) Очевидно, что  $|x| \ge 0$  для всех  $x \in \mathbb{K}$ .
  - (ii) Если  $\lambda \in \mathbb{R}$  и  $x \in \mathbb{R}$ , то  $|\lambda x| = |\lambda| |x|$ .
- (iii) Для  $x, y \in \mathbb{R}$  имеем  $|x + y| \le |x| + |y|$ .
- (iv) Очевидно, что, если |x| = 0, то x = 0.

Пример 1.1.3.  $\mathbb{K}_2^n$ . Для  $\boldsymbol{x} \in \mathbb{K}^n$ ,  $\boldsymbol{x} = (x_1, \dots, x_n)^t$ ,  $x_s \in \mathbb{K}$  для всех  $s = 1, \dots, n$ , положим

$$\|\boldsymbol{x}\|_2 = \sqrt{|x_1|^2 + \ldots + |x_n|^2}.$$

Тогда  $\|\cdot\|_2$  является нормой на  $\mathbb{K}^n$ . Линейное нормированное пространство ( $\mathbb{K}^n, \|\cdot\|$ ) обозначается  $\mathbb{K}_2^n$ .

Если  $N_0 \subset \{1, ..., n\}, N_0 \neq \emptyset$ , то

$$\|x\|_{2,N_0} = \sqrt{\sum_{k \in \mathbb{N}_0} |x_k|^2}$$

является полунормой.

Если  $N_0 = \{1, \dots, n\}$ , то для всех  $\boldsymbol{x} \in \mathbb{K}^n$  имеем, что

$$\|\boldsymbol{x}\|_{2,N_0} = \|\boldsymbol{x}\|_2$$

является нормой.

- ▶ Рассмотрим случай  $\mathbb{K} = \mathbb{R}$ . (Все остается верно и для  $\mathbb{K} = \mathbb{C}$ ). Докажем, что  $\|\cdot\|_2$  является нормой.
  - (i) Очевидно, что для всех  $\boldsymbol{x} = (x_1, \dots, x_n)^t$

$$\|\boldsymbol{x}\|_2 = \sqrt{|x_1|^2 + \ldots + |x_n|^2} \ge 0.$$

(ii) Если 
$$\mathbf{x} = (x_1, \dots, x_n)^t$$
 и  $\lambda \in \mathbb{R}$ , то  $\lambda \mathbf{x} = (\lambda x_1, \dots, \lambda x_n)^t$ , и 
$$\|\lambda \mathbf{x}\|_2 = \sqrt{|\lambda x_1|^2 + \dots + |\lambda x_n|^2} = \sqrt{|\lambda|^2 \big(|x_1|^2 + \dots + |x_n|^2\big)} =$$
$$= |\lambda| \sqrt{|x_1|^2 + \dots + |x_n|^2} = |\lambda| \|\mathbf{x}\|_2.$$

(ііі) Пусть  $\boldsymbol{x}=(x_1,\ldots,x_n)^t$ ,  $\boldsymbol{y}=(y_1,\ldots,y_n)^t$ . Тогда  $\boldsymbol{x}+\boldsymbol{y}=(x_1+y_1,\ldots,x_n+y_n)^t$ , и, используя то, что  $|x_s+y_s|\leq |x_s|+|y_s|$  для всех  $x_s,y_s\in\mathbb{R}$  неравенство Коши-Буняковского, имеем

$$\|\boldsymbol{x}+\boldsymbol{y}\|_{2} = \sqrt{|x_{1}+y_{1}|^{2} + \ldots + |x_{n}+y_{n}|^{2}} \leq$$

$$\leq \sqrt{(|x_{1}|+|y_{1}|)^{2} + \ldots + (|x_{n}|+|y_{n}|)^{2}} =$$

$$= \sqrt{|x_{1}|^{2} + 2|x_{1}||y_{1}|+|y_{1}|^{2} + \ldots + |x_{n}|^{2} + 2|x_{n}||y_{n}|+|y_{n}|^{2}} =$$

$$= (|x_{1}|^{2} + \ldots + |x_{n}|^{2} + |y_{1}|^{2} + \ldots + |y_{n}|^{2} +$$

$$+ 2(|x_{1}||y_{1}| + \ldots + |x_{n}||y_{n}|))^{\frac{1}{2}} \leq$$

$$\leq (|x_{1}|^{2} + \ldots + |x_{n}|^{2} + |y_{1}|^{2} + \ldots + |y_{n}|^{2} +$$

$$+ 2\sqrt{|x_{1}|^{2} + \ldots + |x_{n}|^{2}} \sqrt{|y_{1}|^{2} + \ldots + |y_{n}|^{2}})^{\frac{1}{2}} =$$

$$= (\|\boldsymbol{x}\|_{2}^{2} + \|\boldsymbol{y}\|_{2}^{2} + 2\|\boldsymbol{x}\|_{2}\|\boldsymbol{y}\|_{2})^{\frac{1}{2}} = \|\boldsymbol{x}\|_{2} + \|\boldsymbol{y}\|_{2}.$$

(iv) Очевидно, что, если

$$\|\boldsymbol{x}\|_2 = \sqrt{|x_1|^2 + \ldots + |x_n|^2} = 0,$$

TO  $x_1 = \ldots = x_n = 0$ , T.E.  $\mathbf{x} = 0$ .

Рассмотрим теперь функцию  $\|\cdot\|_{2,N_0}$ . Пусть, например,  $N_0=\{1,\dots,n-1\}$ . Тогда для  ${\pmb x}=(x_1,\dots,x_{n-1},x_n)^t$  имеем, что

$$\|\boldsymbol{x}\|_{2,N_0} = \sqrt{|x_1|^2 + \ldots + |x_{n-1}|^2}.$$

Очевидно, что все свойства (i)—(iii) имеют место (надо во всех формулах положить  $x_n = 0$ ). Однако для  $\mathbf{x}^0 = (0, \dots, 0, 1)^t$  имеем, что

$$\|\boldsymbol{x}^0\|_{2,N_0} = \sqrt{0^2 + \ldots + 0^2} = 0,$$

при этом  $x^0 \neq \mathbf{0}$ . Таким образом,  $\|\cdot\|_{2,N_0}$  не является нормой, а только полунормой.

 $\Pi pumep\ 1.1.4.\ \mathbb{K}_1^n$ : Для линейного пространства  $E=\mathbb{K}^n$  над полем  $\mathbb{K}$  функция

$$\|x\|_1 = |x_1| + \ldots + |x_n|$$

задает норму.

Если  $N_0 \subset \{1, ..., n\}, N_0 \neq \emptyset$ , то

$$\|\boldsymbol{x}\|_{1,N_0} = \sum_{k \in N_0} |x_k|$$

является полунормой. Если  $N_0 = \{1, \dots, n\}$ , то  $\|\cdot\|_{1,N_0} = \|\cdot\|_1$  является нормой.

- ◀ Докажем, что || · ||₁ является нормой.
  - (i) Действительно, для  $\boldsymbol{x} = (x_1, \dots, x_n)^t$  имеем

$$\|\boldsymbol{x}\|_1 = |x_1| + \ldots + |x_n| \ge 0.$$

(ii) Если  $\lambda \in \mathbb{K}$ , то  $\lambda \boldsymbol{x} = (\lambda x_1, \dots, \lambda x_n)^t$ , и

$$\|\lambda x\|_1 = |\lambda x_1| + \ldots + |\lambda x_n| = |\lambda| (|x_1| + \ldots + |x_n|) = |\lambda| \|x\|_1.$$

(iii) Для  $\boldsymbol{x}=(x_1,\dots,x_n)^t$  и  $\boldsymbol{y}=(y_1,\dots,y_n)^t$  имеем, что  $\boldsymbol{x}+\boldsymbol{y}=(x_1+y_1,\dots,x_n+y_n)^t$ , и

$$||x + y||_1 = |x_1 + y_1| + \dots + |x_n + y_n| \le$$

$$\le |x_1| + |y_1| + \dots + |x_n| + |y_n| =$$

$$= (|x_1| + \dots + |x_n|) + (|y_1| + \dots + |y_n|) =$$

$$= ||x||_1 + ||y||_1.$$

(iv) Если  $\| {\bm x} \|_1 = |x_1| + \ldots + |x_n| = 0,$  то  $x_1 = \ldots = x_n = 0$ , т.е.  ${\bm x} = 0$ .

Рассмотрим теперь  $\|\cdot\|_{1,N_0}$ . Очевидно, что эта функция удовлетворяет свойствам (i) — (iii) (надо положить  $x_k=0,\ y_k=0$  для всех  $k\notin N_0$  в всех предыдущих формулах). Однако, если  $\boldsymbol{x}=(x_1,\ldots,x_n)$ , причем  $x_k=0$  для всех  $k\in N_0$ , то

$$\|\boldsymbol{x}\|_{1,N_0} = 0 + \ldots + 0 = 0.$$

Если при этом  $x_{k_0} \neq 0$  хотя бы для одного  $k_0 \notin N_0$ , то тогда  $x \neq 0$ , т.е. (iv) не выполняется и  $\|\cdot\|_{1,N_0}$ , являясь полунормой, не является нормой.

 $\Pi$ ример 1.1.5.  $\mathbb{K}_{\infty}^n$ : Пусть  $E = \mathbb{K}^n$  над полем  $\mathbb{K}$ . Тогда

$$\|\boldsymbol{x}\|_{\infty} = \max_{1 \le k \le n} |x_k|$$

является нормой на E.

Если  $N_0 \subset \{1,\ldots,n\},\, N_0 \neq \emptyset,$  то

$$\|\boldsymbol{x}\|_{\infty,N_0} = \max_{k \in N_0} |x_k|$$

является полунормой.

- Докажем, что ∥ · ∥<sub>∞</sub> является нормой.
  - (i) Очевидно, что для произвольного  $\boldsymbol{x} = (x_1, \dots, x_n)^t$

$$\|\boldsymbol{x}\|_{\infty} = \max\{|x_1|,\ldots,|x_n|\} \geq 0.$$

(ii) Для  $\lambda \in \mathbb{K}$  имеем  $\lambda \boldsymbol{x} = (\lambda x_1, \dots, \lambda x_n)^t$  и

$$\|\lambda \boldsymbol{x}\|_{\infty} = \max\{|\lambda x_1|, \dots, |\lambda x_n|\} =$$

$$= \max\{|\lambda| |x_1|, \dots, |\lambda| |x_n|\} =$$

$$= |\lambda| \max\{|x_1|, \dots, |x_n|\} =$$

$$= |\lambda| \|\boldsymbol{x}\|_{\infty}.$$

(ііі) Пусть  $\boldsymbol{y}=(y_1,\ldots,y_n)^t$ . Тогда  $\boldsymbol{x}+\boldsymbol{y}=(x_1+y_1,\ldots,x_n+y_n)^t$ . Прежде всего заметим, что для произвольного  $s,\ 1\leq s\leq n,$ 

$$|x_s| \le \max\{|x_1|, \dots, |x_n|\} = ||x||_{\infty}.$$

Поэтому, для каждого такого s

$$|x_s + y_s| \le |x_s| + |y_s| \le ||x||_{\infty} + ||y||_{\infty},$$

И

$$\|x + y\|_{\infty} = \max\{|x_1 + y_1|, \dots, |x_n + y_n|\} \le \|x\|_{\infty} + \|y\|_{\infty}.$$

(iv) Если

$$\|\boldsymbol{x}\|_{\infty} = \max\{|x_1|, \dots, |x_n|\} = 0,$$

то  $|x_s| = 0$ , т.е.  $x_s = 0$  для всех s, и, следовательно, x = 0.

Случай функции  $\|\cdot\|_{\infty,N_0}$  рассматривается аналогично примерам 1.1.3 и 1.1.5.

**Утверждение 1.1.6.** Пусть  $\|\cdot\| - npe$ днорма на линейном пространстве E.

- (a)  $U_{MeeM}$ ,  $umo \|\mathbf{0}\| = 0$ .
- (b)  $A_{AB} \ ecex \ x^1, \dots, x^m \in E$ :

$$\|x^1 + \ldots + x^m\| < \|x^1\| + \ldots + \|x^m\|.$$

(c) для любой пары  $\boldsymbol{x}, \boldsymbol{y} \in E$ :

$$|||x|| - ||y||| \le ||x - y||.$$

Доказательство. (а) Действительно,

$$\|\mathbf{0}\| = \|0 \cdot \mathbf{0}\| = 0 \cdot \|\mathbf{0}\| = 0.$$

(b) Используя последовательно неравенство треугольника, имеем

$$\begin{aligned} \| \boldsymbol{x}^1 + \boldsymbol{x}^2 + \ldots + \boldsymbol{x}^m \| &= \| \boldsymbol{x}^1 + (\boldsymbol{x}^2 + \ldots + \boldsymbol{x}^m) \| \le \\ &\le \| \boldsymbol{x}^1 \| + \| \boldsymbol{x}^2 + \boldsymbol{x}^3 + \ldots + \boldsymbol{x}^m \| = \\ &= \| \boldsymbol{x}^1 \| + \| \boldsymbol{x}^2 + (\boldsymbol{x}^3 + \ldots + \boldsymbol{x}^m) \| \le \\ &\le \| \boldsymbol{x}^1 \| + \| \boldsymbol{x}^2 \| + \| \boldsymbol{x}^3 + \ldots + \boldsymbol{x}^m \| \le \ldots \\ &\le \| \boldsymbol{x}^1 \| + \| \boldsymbol{x}^2 \| + \ldots + \| \boldsymbol{x}^m \|. \end{aligned}$$

(с) Требуется доказать, что

$$-\|x-y\| \le \|x\| - \|y\| \le \|x-y\|.$$

Используя неравенство треугольника, получим

$$||x|| = ||x - y + y|| \le ||x - y|| + ||y||.$$

Таким образом,

$$||x|| - ||y|| \le ||x - y||,$$

что есть правая часть доказываемого неравенства. Меняя местами  $\boldsymbol{x}$  и  $\boldsymbol{y}$ , получаем

$$\|y\| - \|x\| \le \|y - x\| = \|x - y\|,$$

или, умножая обе части на -1, имеем

$$-\|x-y\| \le \|x\| - \|y\|.$$

**Утверждение 1.1.7.** Пусть функция  $\|\cdot\|_1 \colon \mathbb{K}^\infty \to \overline{\mathbb{R}}_+$  определена на  $\boldsymbol{x} = (x_1, x_2, \ldots) \in \mathbb{K}^\infty$  как

$$\|\boldsymbol{x}\|_1 = \sum_{k=1}^{\infty} |x_k|.$$

Тогда подмножество

$$\ell_1 = \{ \boldsymbol{x} \in \mathbb{K}^{\infty} : \|\boldsymbol{x}\|_1 < \infty \}$$

является линейным пространством над  $\mathbb{K}$ , и ограничение  $\|\cdot\|_1$  на  $\ell_1$  является нормой.

Доказательство. Пусть  $\mathbf{x} = (x_1, x_2, \ldots), \mathbf{y} = (y_1, y_2, \ldots)$  и  $\mathbf{x}, \mathbf{y} \in \ell_1$ , т.е.

$$\|\boldsymbol{x}\|_1 = \sum_{k=1}^{\infty} |x_k| < \infty, \qquad \|\boldsymbol{y}\|_1 = \sum_{k=1}^{\infty} |y_k| < \infty.$$

Поскольку для каждого  $k \in \mathbb{N}$ 

$$|x_k + y_k| \le |x_k| + |y_k|,$$

то для произвольного  $n \in \mathbb{N}$ 

$$\sum_{k=1}^{n} |x_k + y_k| \le \sum_{k=1}^{n} (|x_k| + |y_k|) = \sum_{k=1}^{n} |x_k| + \sum_{k=1}^{n} |y_k| \le$$

$$\le \sum_{k=1}^{\infty} |x_k| + \sum_{k=1}^{\infty} |y_k| = ||\boldsymbol{x}||_1 + ||\boldsymbol{y}||_1.$$

Поскольку это верно для всех n, то, переходя к пределу при  $n \to \infty$ , получаем, что

$$\|\boldsymbol{x} + \boldsymbol{y}\|_1 = \sum_{k=1}^{\infty} |x_k + y_k| = \lim_{n \to \infty} \sum_{k=1}^{n} |x_k + y_k| \le \lim_{n \to \infty} (\|\boldsymbol{x}\|_1 + \|\boldsymbol{y}\|_1) = \|\boldsymbol{x}\|_1 + \|\boldsymbol{y}\|_1.$$

Это доказывает свойство (ііі) определения 1.1.1, а также то, что

$$\|\boldsymbol{x} + \boldsymbol{y}\|_1 < \infty,$$

если  $\|\boldsymbol{x}\|_1 < \infty$  и  $\|\boldsymbol{y}\|_1 < \infty$ , т.е.  $\boldsymbol{x} + \boldsymbol{y} \in \ell_1$  для  $\boldsymbol{x}, \boldsymbol{y} \in \ell_1$ .

Для  $\lambda \in \mathbb{K}$  и  $\boldsymbol{x} \in \ell_1$  имеем  $\lambda \boldsymbol{x} = (\lambda x_1, \lambda x_2, \ldots)$  и

$$\begin{split} \|\lambda \boldsymbol{x}\|_1 &= \sum_{k=1}^{\infty} |\lambda x_k| = \lim_{n \to \infty} \sum_{k=1}^{n} |\lambda x_k| = \\ &= \lim_{n \to \infty} \sum_{k=1}^{n} |\lambda| \, |x_k| = \lim_{n \to \infty} |\lambda| \sum_{k=1}^{n} |x_k| = \\ &= |\lambda| \lim_{n \to \infty} \sum_{k=1}^{n} |x_k| = |\lambda| \sum_{k=1}^{\infty} |x_k| = \\ &= |\lambda| \, \|\boldsymbol{x}\|_1, \end{split}$$

что доказывает свойство (ii) определения 1.1.1. Отсюда следует, что  $\|\lambda x\|_1 < \infty$ , если  $\|x\|_1 < \infty$ , т.е.  $\lambda x \in \ell_1$  для  $x \in \ell_1$ .

Таким образом,  $\ell_1$  является линейным пространством над  $\mathbb{K}$ , и  $\|\cdot\|_1$  является полунормой на  $\ell_1$ .

Наконец, если

$$\|\boldsymbol{x}\|_1 = \sum_{k=1}^{\infty} |x_k| = 0,$$

то  $x_k=0$  для всех  $k\in\mathbb{N}$ , и  ${\boldsymbol x}={\boldsymbol 0}$ , т.е  $\|\cdot\|_1$  является нормой.  $\square$ 

Замечание 1.1.8. Пусть  $N_0 \subset \mathbb{N}$  и рассмотрим функцию  $\|\cdot\|_{1,N_0} \colon \mathbb{K}^\infty \to \mathbb{R}_+$ , заданную для  $\boldsymbol{x} = (x_1, x_2, \ldots)^t \in \mathbb{K}^\infty$  как

$$\|\boldsymbol{x}\|_{1,N_0} = \sum_{k \in N_0} |x_k|.$$

Тогда

$$\ell_{1,N_0} = \{ m{x} \in \mathbb{K}^{\infty} : \| m{x} \|_{1,N_0} < \infty \}$$

является линейным пространством над  $\mathbb{K}$  и  $\|\cdot\|_{1,N_0}$  является на нем полунормой.

**Утверждение 1.1.9.** Пусть функции  $\|\cdot\|_2, \|\cdot\|_\infty \colon \mathbb{K}^\infty \to \overline{\mathbb{R}}_+$  заданы как

$$\|\boldsymbol{x}\|_2 = \left(\sum_{k=1}^{\infty} |x_k|^2\right)^{\frac{1}{2}}, \qquad \|\boldsymbol{x}\|_{\infty} = \sup_{k \in \mathbb{N}} |x_k|.$$

Тогда подмножества

$$\ell_2 = \{oldsymbol{x} \in \mathbb{K}^\infty : \|oldsymbol{x}\|_2 < \infty\}, \qquad \ell_\infty = \{oldsymbol{x} \in \mathbb{K}^\infty : \|oldsymbol{x}\|_\infty < \infty\}$$

являются линейными пространствами над  $\mathbb{K}$ , а  $(\ell_2, \|\cdot\|_2)$  и  $(\ell_\infty, \|\cdot\|_\infty)$  линейными нормированными пространствами.

Доказательство. Доказательство проводится аналогично доказательству утверждения 1.1.7 с использованием результатов, полученных в примерах 1.1.3 и 1.1.5.

Рассмотрим случай  $\|\cdot\|_2$ . Пусть  $\boldsymbol{x}=(x_1,x_2,\ldots)$  и  $\boldsymbol{y}=(y_1,y_2,\ldots),$  и  $\boldsymbol{x},\boldsymbol{y}\in\ell_2,$  т.е.

$$\|m{x}\|_2^2 = \sum_{k=1}^\infty |x_k|^2 < \infty$$
 и  $\|m{y}\|_2^2 = \sum_{k=1}^\infty |y_k|^2 < \infty.$ 

Зафиксируем произвольное  $n \in \mathbb{N}$ . Тогда, как в примере 1.1.3, имеем, что

$$\sqrt{\sum_{k=1}^{n} |x_k + y_k|^2} \le \sqrt{\sum_{k=1}^{n} |x_k|^2} + \sqrt{\sum_{k=1}^{n} |y_k|^2} \le \sqrt{\sum_{k=1}^{\infty} |x_k|^2} + \sqrt{\sum_{k=1}^{\infty} |y_k|^2} =$$

$$= ||\boldsymbol{x}||_2 + ||\boldsymbol{y}||_2.$$

Таким образом,

$$\|\boldsymbol{x} + \boldsymbol{y}\|_{2} = \sqrt{\sum_{k=1}^{\infty} |x_{k} + y_{k}|^{2}} = \sqrt{\lim_{n \to \infty} \sum_{k=1}^{n} |x_{k} + y_{k}|^{2}} =$$

$$= \lim_{n \to \infty} \sqrt{\sum_{k=1}^{n} |x_{k} + y_{k}|^{2}} \le \lim_{n \to \infty} (\|\boldsymbol{x}\|_{2} + \|\boldsymbol{y}\|_{2}) =$$

$$= \|\boldsymbol{x}\|_{2} + \|\boldsymbol{y}\|_{2}.$$

Это доказывает, что  $\|x+y\|_2 < \infty$ , и  $x,y \in \ell_2$ , а также свойство (iii) определения 1.1.1.

Пусть теперь  $\lambda \in \mathbb{K}$  и  $\boldsymbol{x} = (x_1, x_2, \ldots) \in \ell_2$ . Имеем

$$\begin{split} \|\lambda \boldsymbol{x}\|_2 &= \sqrt{\sum_{k=1}^{\infty} |\lambda x_k|^2} = \sqrt{\sum_{k=1}^{\infty} |\lambda|^2 |x_k|^2} = \\ &= \sqrt{|\lambda|^2 \sum_{k=1}^{\infty} |x_k|^2} = |\lambda| \sqrt{\sum_{k=1}^{\infty} |x_k|^2} = |\lambda| \, \|\boldsymbol{x}\|_2. \end{split}$$

Это доказывает, что  $\|\lambda x\|_2 < \infty$ , т.е.  $\lambda x \in \ell_2$ . Таким образом,  $\ell_2$  является линейным пространством.

Из последнего равенства также следует выполнение (ii) определения 1.1.1. Выполнение (i) и (iv) очевидно.

Случай 
$$\|\cdot\|_{\infty}$$
 рассматривается аналогично.

**Утверждение 1.1.10.** Пусть для  $p \in [1, +\infty)$  функция  $\|\cdot\|_p \colon \mathbb{K}^\infty \to \mathbb{R}_+$  задана как

$$\|\boldsymbol{x}\|_p = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}}.$$

Тогда подмножество

$$\ell_p = \{ \boldsymbol{x} \in \mathbb{K}^{\infty} : \|\boldsymbol{x}\|_p < \infty \},$$

является линейным пространством над  $\mathbb{K}$ , а  $(\ell_p, \|\cdot\|_p)$  линейным нормированным пространством.

Доказательство. Без доказательства.

**Утверждение 1.1.11.** На линейном пространстве  $\mathcal{F}(\Omega; \mathbb{K})$  всех функций на некоторм множестве  $\Omega$  со значениями в  $\mathbb{K}$  определим функцию  $\|\cdot\|_{\infty}: \mathcal{F}(\Omega; \mathbb{K}) \to \overline{\mathbb{R}}_+$  как

$$||f||_{\infty} = \sup_{\omega \in \Omega} |f(\omega)|, \qquad f \in \mathcal{F}(\Omega; \mathbb{K}),$$

u nycmb

$$\mathcal{F}_b(\Omega; \mathbb{K}) = \{ f \in \mathcal{F}(\Omega; \mathbb{K}) : ||f||_{\infty} < \infty \}.$$

Тогда  $\mathcal{F}_b(\Omega; \mathbb{K})$  является линейным нормированным пространством над  $\mathbb{K}$ ,  $a \parallel \cdot \parallel_{\infty}$  является нормой на  $\mathcal{F}_b(\Omega; \mathbb{K})$ .

Доказательство. Докажем, что  $\mathcal{F}_b(\Omega; \mathbb{K})$  является линейным пространством (подпространством пространства  $\mathcal{F}(\Omega; \mathbb{K})$ ).

Пусть  $f,g \in \mathcal{F}_b(\Omega;\mathbb{K})$ , т.е. существуют  $C_1,C_2 \in \mathbb{R}$  такие, что  $|f(\omega)| \leq C_1$  и  $|g(\omega)| \leq C_2$  для всех  $\omega \in \Omega$ . Тогда

$$|(f+g)(\omega)| = |f(\omega) + g(\omega)| \le |f(\omega)| + |g(\omega)| \le C_1 + C_2$$

для всех  $\omega \in \Omega$ . Поэтому  $f + g \in \mathcal{F}_b(\Omega; \mathbb{K})$ .

Аналогично доказывается, что  $\lambda f \in \mathcal{F}_b(\Omega; \mathbb{K})$ , если  $f \in \mathcal{F}_b(\Omega; \mathbb{K})$ , и  $\lambda \in \mathbb{K}$ .

Докажем, что  $\|\cdot\|_{\infty}$  является нормой на  $\mathcal{F}_b(\Omega;\mathbb{K})$ .

Свойство (i) в определении 1.1.1 имеет место, поскольку  $0(\omega)=0$  для всех  $\omega\in\Omega$  по определению нулевой функции.

Проверим выполнение свойства (іі). Имеем

$$\|\lambda f\|_{\infty} = \sup_{\omega \in \Omega} |\lambda f|(\omega) = \sup_{\omega \in \Omega} |\lambda f(\omega)| = |\lambda| \sup_{\omega \in \Omega} |f(\omega)| = |\lambda| \|f\|_{\infty}.$$

Наконец, для (ііі) имеем, что

$$|f(\omega)| \leq \sup_{\omega \in \Omega} |f(\omega)|, \qquad |g(\omega)| \leq \sup_{\omega \in \Omega} |g(\omega)|$$

для всех  $\omega \in \Omega$ . Поэтому

$$|f(\omega)| + |g(\omega)| \le \sup_{\omega \in \Omega} |f(\omega)| + \sup_{\omega \in \Omega} |g(\omega)|$$

для всех  $\omega \in \Omega$ , и, следовательно,

$$\sup_{\omega \in \Omega} (|f(\omega)| + |g(\omega)|) \le \sup_{\omega \in \Omega} |f(\omega)| + \sup_{\omega \in \Omega} |g(\omega)|.$$

Таким образом,

$$||f+g||_{\infty} = \sup_{\omega \in \Omega} |(f+g)(\omega)| = \sup_{\omega \in \Omega} |f(\omega)+g(\omega)| \le$$

$$\leq \sup_{\omega \in \Omega} \left( |f(\omega)| + |g(\omega)| \right) \leq \sup_{\omega \in \Omega} |f(\omega)| + \sup_{\omega \in \Omega} |g(\omega)| =$$
$$= \|f\|_{\infty} + \|g\|_{\infty}.$$

Наконец, если

$$||f||_{\infty} = \sup_{\omega \in \Omega} |f(\omega)| = 0,$$

то  $f(\omega) = 0$  для всех  $\omega \in \Omega$ , и, следовательно, f является нулевой функцией, откуда следует выполнение (iv).

3амечание 1.1.12. Пусть  $\Omega_0 \subset \Omega$ . Для линейного пространства  $\mathcal{F}(\Omega; \mathbb{K})$  определим  $\|\cdot\|_{\infty,\Omega_0} \colon \mathcal{F}_b(\Omega; \mathbb{K}) \to \overline{\mathbb{R}}_+$  как

$$||f||_{\infty,\Omega_0} = \sup_{\omega \in \Omega_0} |f(\omega)|.$$

Тогда

$$\mathcal{F}_{b,\Omega_0} = \{ f \in \mathcal{F}(\Omega; \mathbb{K}) : ||f||_{\infty,\Omega_0} < \infty \}$$

является линейным подпространством  $\mathcal{F}(\Omega; \mathbb{K})$ , а  $\|\cdot\|_{\infty,\Omega_0}$  является полунормой на  $\mathcal{F}_{b,\Omega_0}(\Omega; \mathbb{K})$ .

**Утверждение 1.1.13.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство над полем  $\mathbb{K}$ , и  $E' \subset E$  — линейное подпространство E. Для каждого  $\mathbf{x}' \in E'$  положим  $\|\mathbf{x}'\|' = \|\mathbf{x}'\|$  (функция  $\|\cdot\|'$  является ограничением функции  $\|\cdot\|$  на E'). Тогда  $(E', \|\cdot\|')$  является линейным нормированным пространством.

*Доказательство*. Функция  $\|\cdot\|'$  обладает всеми свойствами нормы, поскольку ими обладает функция  $\|\cdot\|$ .

Следствие 1.1.14. Пусть  $\Omega \subset \mathbb{K}^n$  является компактным подмножеством  $\mathbb{K}^n$ , и для  $E = \mathcal{C}(\Omega; \mathbb{K})$ , линейного пространства над  $\mathbb{K}$  всех непрерывных функций на  $\Omega$  со значениями в  $\mathbb{K}$ , положим

$$||f||_{\infty} = \sup_{t \in \Omega} |f(t)|.$$

Tог $\partial a \parallel \cdot \parallel_{\infty}$  является нормой на  $\mathcal{C}(\Omega; \mathbb{K})$ .

Доказательство. Поскольку сумма непрерывных функций является непрерывной, и непрерывная функция, умноженная на число, также непрерывна, то  $\mathcal{C}(\Omega;\mathbb{K})$  образуют линейное подпространство в линейном пространстве  $\mathcal{F}(\Omega;\mathbb{K})$ . А, поскольку по теореме II.12.2.1 непрерывная функция на компактном множестве является ограниченной, то  $\mathcal{C}(\Omega;\mathbb{K}) \subset \mathcal{F}_b(\Omega;\mathbb{K})$ . Поэтому  $\mathcal{C}(\Omega;\mathbb{K})$  является линейным подпространством  $\mathcal{F}_b(\Omega;\mathbb{K})$ , и, согласно утверждению 1.1.13,  $(\mathcal{C}(\Omega;\mathbb{K}),\|\cdot\|_{\infty})$  является линейным нормированным пространством.

**Утверждение 1.1.15.** Для линейного пространства  $C([a,b];\mathbb{K})$  всех непрерывных функций на  $[a,b] \subset \mathbb{R}$  со значениями в  $\mathbb{K}$  положим

$$||f||_1 = \int_a^b |f(t)| dt.$$

Tог $\partial a \parallel \cdot \parallel_1$  является нормой на  $\mathcal{C}([a,b];\mathbb{K})$ .

Доказательство. Поскольку  $|f(t)| \ge 0$  для всех  $t \in [a, b]$ , то  $||f||_1 \ge 0$ , т.е. (i) в определении 1.1.1 выполнено.

Рассмотрим  $\|\lambda f\|_1$  для  $\lambda \in \mathbb{K}$  и  $f \in \mathcal{C}([a,b];\mathbb{K})$ :

$$\|\lambda f\|_1 = \int_a^b |\lambda f(t)| \, dt = \int_a^b |\lambda| \, |f(t)| \, dt = |\lambda| \int_a^b |f(t)| \, dt = |\lambda| \, \|f\|_1,$$

таким образом, (іі) выполнено.

Для  $f,g \in \mathcal{C}([a,b];\mathbb{K})$  имеем, что  $|f(t)+g(t)| \leq |f(t)|+|g(t)|$  для всех  $t \in [a,b]$ . Поэтому,

$$||f + g||_1 = \int_a^b |f(t) + g(t)| dt \le \int_a^b (|f(t)| + |g(t)|) dt =$$

$$= \int_a^b |f(t)| dt + \int_a^b |g(t)| dt = ||f||_1 + ||g||_1.$$

Следовательно, свойство (iii) также имеет место.

Наконец, проверим свойство (iv). Пусть  $f \in \mathcal{C}([a,b];\mathbb{K})$  и

$$||f||_1 = \int_a^b |f(t)| dt = 0.$$

Если f не является нулевой функцией, то существует  $t_0 \in [a,b]$ , в которой  $f(t_0) \neq 0$ . Тогда  $|f(t_0)| > 0$ . Так как функция f непрерывна, то и функция |f| непрерывна, и, следовательно, существует такое  $\delta > 0$ , что  $f(t) > \frac{f(t_0)}{2}$  для всех  $t \in I = (t_0 - \delta, t_0 + \delta) \cap [a, b]$ . Учитывая то, что  $|f(t)| \geq 0$  для всех  $t \in [a, b]$ , имеем

$$\|f\|_1=\int_a^b|f(t)|\,dt\geq \int_I|f(t)|\,dt\geq \int_Irac{f(t_0)}{2}\,dt=rac{f(t_0)}{2}\int_Idt=$$
  $=rac{f(t_0)}{2}$ длина $(I)\geq rac{f(t_0)}{2}\delta>0,$ 

что противоречит условию, что  $||f||_1 = 0$ . Таким образом, предположение, что  $f \neq 0$  не верно, т.е. f = 0, и имеет место (iv), а, значит,  $||\cdot||_1$  является нормой.

**Определение 1.1.16.** Пусть E — линейное пространство над полем  $\mathbb{K}$ . Две нормы  $\|\cdot\|_1$  и  $\|\cdot\|_2$  на E называются эквивалентными, если существуют такие  $C_1, C_2 \in \mathbb{R}_+$ , что

$$\|\boldsymbol{x}\|_1 < C_1 \|\boldsymbol{x}\|_2, \qquad \|\boldsymbol{x}\|_2 < C_2 \|\boldsymbol{x}\|_1$$

для всех  $\boldsymbol{x} \in E$ .

 $\Pi$ ример 1.1.17. Нормы  $\|\cdot\|_1$  и  $\|\cdot\|_\infty$  на  $\mathbb{R}^2$  эквивалентны.

 $\blacksquare$  Пусть  $x = (x_1, x_2)^t$ . Тогда

$$|x_1| \le \max\{|x_1|, |x_2|\} = \|\boldsymbol{x}\|_{\infty}, \quad |x_2| \le \max\{|x_1|, |x_2|\} = \|\boldsymbol{x}\|_{\infty}.$$

Поэтому,

$$\|\boldsymbol{x}\|_1 = |x_1| + |x_2| \le \|\boldsymbol{x}\|_{\infty} + \|\boldsymbol{x}\|_{\infty} = 2\|\boldsymbol{x}\|_{\infty}.$$

Таким образом, можно положить  $C_1 = 2$ .

С другой стороны,

$$|x_i| \le |x_1| + |x_2| = ||x||_1, \quad i = 1, 2.$$

Поэтому,

$$\|\boldsymbol{x}\|_{\infty} = \max\{|x_1|, |x_2|\} \le \|\boldsymbol{x}\|_1,$$

и можно взять  $C_2 = 1$ .

**Лемма 1.1.18.** На линейном пространстве  $\mathbb{K}^n$ ,  $n \in \mathbb{N}$ , произвольная норма  $\|\cdot\|$  эквивалентна норме  $\|\cdot\|_2$ , где

$$\|\boldsymbol{x}\|_2 = \sqrt{|x_1|^2 + \ldots + |x_n|^2}, \quad \boldsymbol{x} = (x_1, \ldots, x_n)^t.$$

Доказательство. Будем доказывать для случая  $\mathbb{K}=\mathbb{R}.$  Пусть

$$e_1 = (1, 0, 0, \dots, 0)^t, \quad e_2 = (0, 1, 0, \dots, 0)^t, \quad \dots, \quad e_n = (0, 0, \dots, 0, 1)^t.$$

Для вектора

$$\boldsymbol{x} = (x_1, \dots, x_n) = x_1 \boldsymbol{e}_1 + \dots + x_n \boldsymbol{e}_n$$

имеем, что

$$\|\boldsymbol{x}\|_2 = \sqrt{|x_1|^2 + \ldots + |x_n|^2}.$$

Используя свойства нормы (iii) и (ii), а также неравенство Коши-Буняковского, имеем:

$$\|\mathbf{x}\| = \|x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n\| \le \|x_1\mathbf{e}_1\| + \dots + \|x_n\mathbf{e}_n\| =$$

$$= |x_1| \|\mathbf{e}_1\| + \dots + |x_n| \|\mathbf{e}_n\| \le$$

$$\le \sqrt{|x_1|^2 + \dots + |x_n|^2} \sqrt{\|\mathbf{e}_1\|^2 + \dots + \|\mathbf{e}_n\|^2} =$$

$$= \|\mathbf{x}\|_2 \sqrt{\|\mathbf{e}_1\|^2 + \dots + \|\mathbf{e}_n\|^2}.$$

Полагая  $C_1 = \sqrt{\|\boldsymbol{e}_1\|^2 + \ldots + \|\boldsymbol{e}_n\|^2} > 0$ , из последнего неравенства получаем, что

$$\|\boldsymbol{x}\| \le C_1 \|\boldsymbol{x}\|_2. \tag{1.1}$$

Для доказательства второго неравенства в определении 1.1.16, докажем вначале, что функция  $\|\cdot\|:\mathbb{R}^n\to\mathbb{R}$  является непрерывной на  $\mathbb{R}^n$ . Пусть  $\boldsymbol{x}^0\in\mathbb{R}^n$ — произвольная фиксированная точка. Для  $\boldsymbol{x}\in\mathbb{R}^n$ , используя утверждение 1.1.6 (c), имеем

$$|\|x\| - \|x^0\|| \le \|x - x^0\| \le C_1 \|x - x^0\|_2$$

где последнее неравенство следует из (1.1). Следовательно для любого  $\varepsilon>0$  существует  $\delta=\frac{\varepsilon}{C_1}$  такое, что

$$\|\boldsymbol{x} - \boldsymbol{x}^0\|_2 < \delta \qquad \Longrightarrow \qquad \|\boldsymbol{x}\| - \|\boldsymbol{x}^0\| < \varepsilon,$$

т.е. норма является непрерывной функцией в точке  $x^0$  относительно стандартной нормы в  $\mathbb{R}^n$ .

Рассмотрим множество

$$S = \{ \boldsymbol{y} \in \mathbb{R}^n : ||\boldsymbol{y}||_2 = 1 \}.$$

Это множество является ограниченным и замкнутым в  $\mathbb{R}^n$ , и поэтому компактным. Так как функция  $\|\cdot\|\colon S\to\mathbb{R}$  непрерывна, то она достигает свой минимум на S (теорема II.12.2.2), т.е. существует точка  $\boldsymbol{y}_*\in S$  для которой

$$\|\boldsymbol{y}_*\| \leq \|\boldsymbol{y}\|$$

для всех  $y \in S$ . Поскольку  $y_* \in S$ , то  $y_* \neq \mathbf{0}$ , откуда следует, что  $\|y_*\| > 0$ .

Пусть теперь  $\boldsymbol{x} \in \mathbb{R}^n, \, \boldsymbol{x} \neq \boldsymbol{0}$ . Заметим, что  $\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_2} \in S$ , поскольку

$$\left\| \frac{\boldsymbol{x}}{\|\boldsymbol{x}\|_2} \right\|_2 = \frac{1}{\|\boldsymbol{x}\|_2} \|\boldsymbol{x}\|_2 = 1,$$

Но тогда

$$\|x\| = \|\|x\|_2 \frac{x}{\|x\|_2} \| = \|x\|_2 \|\frac{x}{\|x\|_2} \| \ge \|x\|_2 \|y_*\|,$$
 (1.2)

поскольку  $oldsymbol{y} = rac{oldsymbol{x}}{\|oldsymbol{x}\|_2} \in S$ , а значит  $\|oldsymbol{y}\| \geq \|oldsymbol{y}_*\|$ .

Таким образом, из (1.2) следует, что

$$\|m{x}\|_2 \leq rac{1}{\|m{y}_*\|}\|m{x}\|_2$$

и, полагая  $C_2 = \frac{1}{\|y_*\|}$ , получаем вторую часть неравенства для  $x \neq 0$ . Если x = 0, то доказуемое неравенство очевидно.

**Теорема 1.1.19.** Любые две нормы на  $\mathbb{K}^n$ ,  $n \in \mathbb{N}$ , эквивалентны.

Доказательство. Пусть  $\|\cdot\|'$  и  $\|\cdot\|''$  — две произвольные нормы на  $\mathbb{K}^n$ . Согласно лемме 1.1.18 каждая из них эквивалентна норме  $\|\cdot\|_2$ , т.е существуют такие  $C_1', C_2', C_1'', C_2'' \in \mathbb{R}_+$ , что

$$\|\mathbf{x}\|' \le C_1' \|\mathbf{x}\|_2, \qquad \|\mathbf{x}\|_2 \le C_2' \|\mathbf{x}\|',$$
  
 $\|\mathbf{x}\|'' \le C_1'' \|\mathbf{x}\|_2, \qquad \|\mathbf{x}\|_2 \le C_2'' \|\mathbf{x}\|''$ 

для всех  $x \in \mathbb{K}^n$ . Но тогда имеем, что

$$\|\boldsymbol{x}\|' \le C_1' \|\boldsymbol{x}\|_2 \le C_1' C_2'' \|\boldsymbol{x}\|'',$$
  
 $\|\boldsymbol{x}\|'' \le C_1'' \|\boldsymbol{x}\|_2 \le C_1'' C_2' \|\boldsymbol{x}\|',$ 

что и доказывает эквивалентность норм.

## Задачи

$$KP$$
: 11.1 (4), 11.1 (2), 13, 14.1, 16 (1, 2), 16.1.  $\mathcal{A}P$ : 12.1 (p=1, 2), 14.2, 14.5, 17 (1, 2, 4), 16.2.

## 1.2 Открытые и замкнутые множества

**Определение 1.2.1.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство,  $\boldsymbol{x}^0 \in E, r > 0$ .

(а) Множество

$$B(\mathbf{x}^0; r) = \{ \mathbf{x} \in E : ||\mathbf{x} - \mathbf{x}^0|| < r \}$$

называется omкрытым шаром в E вокруг точки  $\boldsymbol{x}^0$  радиуса r.

(b) Множество

$$\overset{\circ}{B}(\boldsymbol{x}^0;r) = B(\boldsymbol{x}^0;r) \setminus \{\boldsymbol{x}^0\}$$

называется *открытым выколотым шаром* в E вокруг точки  $\boldsymbol{x}^0$  радиуса r.

(с) Множество

$$B[x^0; r] = \{x \in E : ||x - x^0|| \le r\}$$

называется замкнутым шаром в E вокруг точки  $\boldsymbol{x}^0$  радиуса r.

(d) Множество

$$S[x^0; r] = \{x \in E : ||x - x^0|| = r\}$$

называется  $c\phi e po \ddot{u}$  в E вокруг точки  $x^0$  радиуса r.

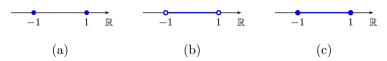


Рис. 1.1: (a) S[0;1], (b) B(0;1), (c) B[0;1] в  $\mathbb{R}$ .

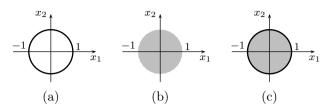


Рис. 1.2: (a) S[0;1], (b) B(0;1), (c) B[0;1] в  $\mathbb{R}^2_2$ .

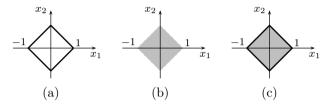


Рис. 1.3: (a) S[0;1], (b) B(0;1), (c) B[0;1] в  $\mathbb{R}^2_1$ .

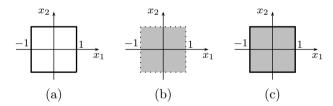


Рис. 1.4: (a) S[0;1], (b) B(0;1), (c) B[0;1] в  $\mathbb{R}^2_{\infty}$ .

Пример 1.2.2. Сфера S[0;1], открытый шар B(0;1) и замкнутый шар B[0;1] показаны в пространствах  $\mathbb{R}$  (рис. 1.1),  $\mathbb{R}^2$  с нормой  $\|\cdot\|_2$  (рис. 1.2),  $\mathbb{R}^2$  с нормой  $\|\cdot\|_1$  (рис. 1.3),  $\mathbb{R}^2$  с нормой  $\|\cdot\|_\infty$  (рис. 1.4).

Графики функций, принадлежащих сфере S[0;1], открытому шару B(0;1) и замкнутому шару B[0;1] в пространстве  $\mathcal{C}([a,b];\mathbb{R})$  показаны на рис. 1.5.

**Определение 1.2.3.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство, и  $X \subset E$  — подмножество E.

(i) Точка  $x^0 \in X$  называется *внутренней* точкой множества X,

#### 1.2. ОТКРЫТЫЕ И ЗАМКНУТЫЕ МНОЖЕСТВА

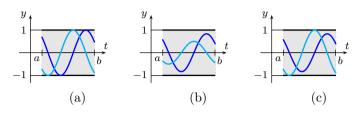


Рис. 1.5: (a) S[0;1], (b) B(0;1), (c) B[0;1] в  $C([a,b];\mathbb{R})$ .

если существует такое r > 0, что  $B(\boldsymbol{x}^0; r) \subset X$ . Множество всех внутренних точек множества X обозначается  $X^{\circ}$ .

(ii) Точка  $x^0 \in E$  называется *предельной* точкой множества X, если  $\overset{\circ}{B}(x^0;r)\cap X\neq\emptyset$  для всех r>0. Множество всех предельных точек множества X обозначается X'.

 $\Pi$ ример 1.2.4. 1. Для  $E=\mathbb{R}$  и X=[a,b] имеем, что  $X^\circ=(a,b),$  X'=[a,b].

2. Если  $E=\mathbb{R}$  и  $X=\mathbb{Q}$ , то  $X^{\circ}=\emptyset$ , а  $X'=\mathbb{R}$ .

ми.

3. Для  $E=\mathbb{R}^2$  и  $X=B[{\bf 0};1]$  имеем, что  $X^\circ=B({\bf 0};1),$  а  $X'=B[{\bf 0};1].$ 

**Определение 1.2.5.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство.

- (i) Подмножество  $U\subset E$  называется *открытым* в E, если каждая точка  $\boldsymbol{x}^0\in U$  является внутренней точкой U, т.е.  $U=U^\circ$ . Пустое множество  $\emptyset$  и все пространство являются открытыми.
- (ii) Подмножество  $F \subset E$  называется *замкнутым* в E, если F содержит все свои предельные точки, т.е.  $F \supset F'$ . Пустое множество  $\emptyset$  и все пространство являются замкнуты-

Пример 1.2.6. 1. Открытый шар  $B(\boldsymbol{x}^0;r)$  является открытым множеством, замкнутый шар  $B[\boldsymbol{x}^0;r]$  является замкнутым множеством.

#### 1.2. ОТКРЫТЫЕ И ЗАМКНУТЫЕ МНОЖЕСТВА

- 2. Множество ∅ является одновременно открытым и замкнутым.
- 3. Множество  $\mathbb{Q}$  в  $\mathbb{R}$  не является ни открытым ни замкнутым.

Определение 1.2.7. Пусть  $X\subset E$ . Множество  $V\subset E$  называется окрестностью множества X, если каждая точка  $x\in X$  является внутренней точкой множества V.

Если  $X = \{x\}$  и V является окрестностью множества X, то V называется *окрестностью* точки x.

- Пример 1.2.8. 1. Открытое множество является окрестностью любой своей точки.
  - 2. Множество  $[0,1] \subset \mathbb{R}$  является окрестностью любой точки из (0,1).

**Теорема 1.2.9.** Множество  $F \subset E$  является замкнутым тогда и только тогда, когда множество  $F^c$  является открытым.

Доказательство. Пусть F является замкнутым. Докажем, что  $F^c$  является открытым множеством. Пусть  $\mathbf{x} \in F^c$ , и докажем, что  $\mathbf{x}$  является внутренней точкой  $F^c$ . Поскольку  $\mathbf{x} \notin F$ , то  $\mathbf{x}$  не может быть предельной точкой F, поскольку F содержит все свои предельные точки (F является замкнутым). Это означает, что существует такое r > 0, что  $B(\mathbf{x}; r) \cap F = \emptyset$ , т.е.  $B(\mathbf{x}; r) \subset F^c$ . Но тогда  $B(\mathbf{x}; r) \cup \{\mathbf{x}\} = B(\mathbf{x}; r) \subset F^c$ , и  $\mathbf{x}$  является внутренней точкой  $F^c$ .

Пусть  $F^c$  открыто, и  $\boldsymbol{x} \in E$  — предельная точка F. Докажем, что  $\boldsymbol{x} \in F$ , т.е. F содержит все свои предельные точки. Поскольку  $\boldsymbol{x} \in E = F \cup F^c$ , то  $\boldsymbol{x} \in F$  либо  $\boldsymbol{x} \in F^c$ . Если  $\boldsymbol{x} \in F^c$ , то, поскольку  $F^c$  открыто, существует r > 0, для которого  $B(\boldsymbol{x};r) \subset F^c$ , т.е.  $B(\boldsymbol{x};r) \cap F = \emptyset$ . Но это противоречит тому, что точка  $\boldsymbol{x}$  является предельной точкой множества F. Таким образом,  $\boldsymbol{x} \in F$ .

**Утверждение 1.2.10.** Пусть E — линейное пространство, и нормы  $\|\cdot\|_1$  и  $\|\cdot\|_2$  на E эквивалентны. Множество  $U\subset E$  является

открытым (соотв., замкнутым) в линейном нормированном пространстве  $E_1 = (E, \|\cdot\|_1)$  тогда и только тогда, когда оно является открытым (соотв., замкнутым) в линейном нормированном пространстве  $E_2 = (E, \|\cdot\|_2)$ .

Доказательство. Поскольку нормы эквивалентны, то согласно определению 1.1.16 существуют такие  $C_1, C_2 > 0$ , что

$$\|\boldsymbol{x}\|_1 \le C_1 \|\boldsymbol{x}\|_2, \qquad \|\boldsymbol{x}\|_2 \le C_2 \|\boldsymbol{x}\|_1$$

для всех  $\boldsymbol{x} \in E$ .

Предположим, что U является открытым в  $E_1$ , и докажем, что U является открытым в  $E_2$ . Пусть  $\boldsymbol{x}^0 \in U$ . Поскольку U открыто в  $E_1$  найдем такое  $r_1 > 0$ , что

$$B_1(\mathbf{x}^0; r_1) = \{ \mathbf{x} \in E : ||\mathbf{x} - \mathbf{x}^0||_1 < r_1 \} \subset U.$$

Положим  $r_2 = \frac{r_1}{C_1}$ , и докажем, что для

$$B_2(\mathbf{x}^0; r_2) = \{ \mathbf{x} \in E : ||\mathbf{x} - \mathbf{x}^0||_2 < r_2 \}$$

имеем, что  $B_2(\mathbf{x}^0; r_2) \subset B_1(\mathbf{x}^0; r_1) \subset U$ .

Действительно, если  $\boldsymbol{x} \in B_2(\boldsymbol{x}^0; r_2)$ , то  $\|\boldsymbol{x} - \boldsymbol{x}^0\|_2 < r_2$ , и, следовательно,

$$\|\boldsymbol{x} - \boldsymbol{x}^0\|_1 \le C_1 \|\boldsymbol{x} - \boldsymbol{x}^0\|_2 < C_1 r_2 = C_1 \frac{r_1}{C_1} = r_1.$$

Таким образом,  $x \in B_1(x^0; r_1)$ , и, следовательно,

$$B_2(\boldsymbol{x}^0; r_2) \subset B_1(\boldsymbol{x}^0; r_1) \subset U.$$

Аналогично доказывается, что множество, открытое в  $E_2$ , является открытым в  $E_1$ .

Поскольку семейство замкнутых множеств в линейном нормированном пространстве совпадает с семейством дополнений к открытым множествам, которые совпадают в  $E_1$  и  $E_2$  по доказанному, семейства замкнутых множеств в  $E_1$  и  $E_2$  также совпадают.

#### 1.2. ОТКРЫТЫЕ И ЗАМКНУТЫЕ МНОЖЕСТВА

- **Теорема 1.2.11.** (a) Пусть  $\{U_k\}_{k=1}^m$  конечное непустое семейство открытых множеств. Тогда множество  $U = \bigcap_{k=1}^m U_k$  является открытым.
  - (b) Пусть  $\{U_{\gamma}\}_{\gamma\in\Gamma}$  произвольное непустое семейство открытых множеств. Тогда множество  $V=\bigcup_{\gamma\in\Gamma}U_{\gamma}$  является открытым.
  - (c) Пусть  $\{F_k\}_{k=1}^m$  конечное непустое семейство замкнутых множеств. Тогда множество  $F = \bigcup_{k=1}^m F_k$  является замкнутым.
  - (d) Пусть  $\{F_{\gamma}\}_{{\gamma}\in{\Gamma}}$  произвольное непустое семейство замкнутых множеств. Тогда множество  $G=\bigcap_{{\gamma}\in{\Gamma}} F_{\gamma}$  является замкнутым.
- Доказательство. (а) Пусть  $U = \bigcap_{k=1}^m U_k$ . Если  $U = \emptyset$ , то оно открыто. Поэтому предположим, что  $U \neq \emptyset$ .

Пусть  $\mathbf{x}^0 \in U$ . Для каждого k = 1, ..., m множество  $U_k$  является открытым, и, следовательно, существует такое  $r_k > 0$ , что  $B(\mathbf{x}^0; r_k) \subset U_k$ . Положим

$$r = \min\{r_1, \dots, r_m\} > 0.$$

Поскольку  $r \leq r_k$ , то  $B(\boldsymbol{x}^0;r) \subset B(\boldsymbol{x}^0;r_k) \subset U_k$  для всех  $k=1,\ldots,m$ . Следовательно,  $B(\boldsymbol{x}^0;r) \subset \bigcap_{k=1}^m U_k = U$ , что значит, что U открыто.

- (b) Пусть  $V = \bigcup_{\gamma \in \Gamma} U_{\gamma}$ , и  $\boldsymbol{x}^0 \in V$ . Тогда существует такое  $\gamma^0$ , что  $\boldsymbol{x}^0 \in U_{\gamma^0}$ . Но  $U_{\gamma^0}$  является открытым, поэтому существует такое r > 0, что  $B(\boldsymbol{x}^0;r) \subset U_{\gamma^0}$ . Но тогда  $B(\boldsymbol{x}^0;r) \subset U_{\gamma^0} \subset \bigcup_{\gamma \in \Gamma} U_{\gamma} = V$ , и V является открытым.
- (c) Пусть  $F = \bigcup_{k=1}^{m} F_k$ . Достаточно доказать, что множество

$$F^c = \left(\bigcup_{k=1}^m F_k\right)^c = \bigcap_{k=1}^m F_k^c$$

является открытым (теорема 1.2.9). Согласно теореме 1.2.9, каждое множество  $F_k^c$ ,  $k=1,\ldots,m$ , является открытым. Поэтому, используя (a), получаем, что и  $F^c$  является открытым.

(d) Пусть  $G = \bigcap_{\gamma \in \Gamma} F_{\gamma}$ . Достаточно доказать, что

$$G^{c} = \left(\bigcap_{\gamma \in \Gamma} F_{\gamma}\right)^{c} = \bigcup_{\gamma \in \Gamma} F_{\gamma}^{c}$$

является открытым (теорема 1.2.9). Но для каждого  $\gamma \in \Gamma$  множество  $F_{\gamma}^c$  является открытым. Применяя (b) имеем, что и  $G^c$  открыто, т.е. G замкнуто.

Замечание 1.2.12. Бесконечное пересечение открытых множеств может не быть открыто. Например,

$$\bigcap_{n=1}^{\infty} \left( -\frac{1}{n}, \frac{1}{n} \right) = \{0\}.$$

Аналогично, бесконечное объединение замкнутых множеств может не быть замкнутым. Например,

$$\bigcup_{n=1}^{\infty} \left[ -1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = (-1, 1).$$

## 1.3 Последовательности в ЛНП

**Определение 1.3.1.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство, и  $X \subset E$ .

(a) Функция  $\varphi \colon \mathbb{N} \to X$  называется последовательностью в X. Последовательность также обозначается  $(x_k)_{k=1}^{\infty}$ , где  $x_k = \varphi(k)$ .

П

#### 1.3. ПОСЛЕДОВАТЕЛЬНОСТИ В ЛНП

(b) Если  $\varphi \colon \mathbb{N} \to X$  является последовательностью в X, и  $\psi \colon \mathbb{N} \to \mathbb{N}$  — неубывающая функция, то последовательность  $\varphi \circ \psi \colon \mathbb{N} \to X$  называется nodnocnedoвameльностью последовательности  $\varphi$ . Если  $\mathbf{x}_k = \varphi(k)$  и  $k_l = \psi(l)$ , то для подпоследовательности  $\varphi \circ \psi$  используется обозначение  $(\mathbf{x}_k)_{l=1}^{\infty}$ .

Пример 1.3.2. 1.  $X = [-1, 1] \subset \mathbb{R}, x_n = (-1)^n$ .

- 2.  $X = \mathbb{R}^2$ ,  $\boldsymbol{x}_n = \frac{1}{n} \left(\cos \frac{\pi}{n}, \sin \frac{\pi}{n}\right)$ .
- 3.  $X = \ell_2, \, \boldsymbol{x}_n = \frac{1}{n} \boldsymbol{e}_n.$
- 4.  $X = \mathcal{F}_b([0,1]), f_n(t) = t^n$ .

Определение 1.3.3. Пусть  $(E, \| \cdot \|)$  — линейное нормированное пространство. Элемент  $\mathbf{x}_* \in E$  называется npedenom nocnedoвamenb-nocmu  $(\mathbf{x}_k)_{k=1}^{\infty}$  в E, если любая окрестность V точки  $\mathbf{x}_*$  содержит все члены последовательности  $(\mathbf{x}_k)_{k=1}^{\infty}$ , кроме конечного их числа, т.е. существует такое  $N \in \mathbb{N}$ , что  $\mathbf{x}_k \in V$  для всех k > N. При этом используются обозначения:  $\mathbf{x}_k \to \mathbf{x}_*$  или  $\mathbf{x}_* = \lim_{k \to \infty} \mathbf{x}_k$ .

Определение 1.3.4. Последовательность  $(x_k)_{k=1}^{\infty}$  в  $X \subset E$  называется cxodsumeucs в X (или просто cxodsumeucs), если она имеет предел в E, и этот предел является элементом множества X.

**Утверждение 1.3.5.** Пусть  $(x_k)_{k=1}^{\infty}$  — последовательность в  $X \subset E$ , и  $x_* \in E$ . Следующие условия эквивалентны:

- (a)  $\boldsymbol{x}_* = \lim_{k \to \infty} \boldsymbol{x}_k;$
- (b)  $\lim_{k\to\infty} \|\boldsymbol{x}_k \boldsymbol{x}_*\| = 0.$

Доказательство. (a)  $\Rightarrow$  (b) Пусть  $x_k \to x_*$ ,  $k \to \infty$ , согласно определению 1.3.3. Требуется доказать, что для любого  $\varepsilon > 0$  существует  $N \in \mathbb{N}$  такое, что  $\|x_k - x_*\| < \varepsilon$  для всех k > N. Рассмотрим открытый шар  $B(x_*; \varepsilon)$ , который является окрестностью точки  $x_*$ . По определению существует  $N \in \mathbb{N}$ , для которого  $x_k \in B(x_*; \varepsilon)$  для всех k > N. Но тогда  $\|x_k - x_*\| < \varepsilon$ .

#### 1.3. ПОСЛЕДОВАТЕЛЬНОСТИ В ЛНП

(b)  $\Rightarrow$  (a) Пусть V — окрестность точки  $x_*$ . По определению окрестности (определение 1.2.7) точка  $x_*$  является внутренней точкой множества V, т.е. существует такое  $\varepsilon > 0$ , что  $B(x_*; \varepsilon) \subset V$ . Поскольку  $\|x_k - x_*\| \to 0$ , существует такое  $N \in \mathbb{N}$ , что  $\|x_k - x_*\| < \varepsilon$ , т.е.  $x_k \in B(x_*; \varepsilon)$  при k > N. Это означает, что  $x_k \in V$  для таких k.

**Утверждение 1.3.6.** Пусть  $(x_k)_{k=1}^{\infty}$  и  $(y_k)_{k=1}^{\infty}$  — сходящиеся последовательности в линейном нормированном пространстве  $(E, \|\cdot\|)$  над полем  $\mathbb{K}$ . Тогда последовательности  $(x_k + y_k)_{k=1}^{\infty}$  и  $(\lambda x_k)_{k=1}^{\infty}$ , где  $\lambda \in \mathbb{K}$ , также являются сходящимися, причем

$$\lim_{k\to\infty}(\boldsymbol{x}_k+\boldsymbol{y}_k)=\lim_{k\to\infty}\boldsymbol{x}_k+\lim_{k\to\infty}\boldsymbol{y}_k,\qquad \lim_{k\to\infty}(\lambda\boldsymbol{x}_k)=\lambda\lim_{k\to\infty}\boldsymbol{x}_k.$$

$$egin{aligned} ig\|(oldsymbol{x}_k+oldsymbol{y}_k)-(oldsymbol{x}_*+oldsymbol{y}_*)ig\|&=ig\|(oldsymbol{x}_k-oldsymbol{x}_*)+(oldsymbol{y}_k-oldsymbol{y}_*)ig\|&\leq \|oldsymbol{x}_k-oldsymbol{x}_*\|+\|oldsymbol{y}_k-oldsymbol{y}_*\|. \end{aligned}$$

Используя свойства сходящихся числовых последовательностей, имеем

$$0 \le \lim_{k \to \infty} \|(\boldsymbol{x}_k + \boldsymbol{y}_k) - (\boldsymbol{x}_* + \boldsymbol{y}_*)\| \le \lim_{k \to \infty} (\|\boldsymbol{x}_k - \boldsymbol{x}_*\| + \|\boldsymbol{y}_k - \boldsymbol{y}_*\|) = \lim_{k \to \infty} \|\boldsymbol{x}_k - \boldsymbol{x}_*\| + \lim_{k \to \infty} \|\boldsymbol{y}_k - \boldsymbol{y}_*\| = 0 + 0 = 0.$$

Вторая часть утверждения доказывается аналогично.

#### Задачи

KP: 31.6 (1 2), 31.1, 31.3, 37.1.

 $\mathcal{I}P$ : 31.6 (3), 31.2, 37.2.

**Утверждение 1.3.7.** Пусть E — линейное пространство  $u \| \cdot \|_1 u \| \cdot \|_2$  — эквивалентные нормы на E. Последовательность  $(\mathbf{x}_n)_{n=1}^{\infty}$  в E является сходящейся в линейном нормированном пространстве  $(E, \| \cdot \|_1)$  тогда u только тогда, когда она является сходящейся в  $(E, \| \cdot \|_2)$ .

Доказательство. Пусть  $\boldsymbol{x}_n \to \boldsymbol{x}_*$  в  $(E, \|\cdot\|_1)$ , т.е.

$$\|\boldsymbol{x}_n - \boldsymbol{x}_*\|_1 \to 0, \qquad n \to \infty.$$

Поскольку нормы являются эквивалентными, то  $\|x\|_2 \le C_2 \|x\|_1$  для некоторого  $C_2$  и всех  $x \in E$ . Но тогда

$$\|x_n - x_*\|_2 \le C_2 \|x_n - x_*\|_1 \to 0, \quad n \to \infty,$$

т.е.  $\boldsymbol{x}_n \to \boldsymbol{x}_*$  относительно нормы  $\|\cdot\|_2$ .

Доказательство завершается заменой нормы  $\|\cdot\|_1$  на  $\|\cdot\|_2$  и  $C_2$  на  $C_1$ .

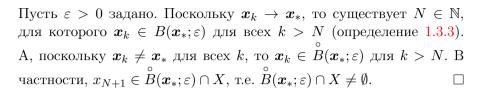
**Утверждение 1.3.8.** Точка  $x_* \in E$  является предельной точкой множества X тогда и только тогда, когда существует такая последовательность  $(x_k)_{k=1}^{\infty}$  в X, что  $x_k \neq x_*$  для всех  $k \in \mathbb{N}$ , и  $x_k \to x_*$ .

Доказательство. Пусть точка  $x_*$  является предельной для множества X. Выберем произвольную последовательность  $\varepsilon_k \to 0$  при  $k \to \infty$  (например,  $\varepsilon_k' = \frac{1}{k}$ ). Поскольку  $x_*$  является предельной точкой множества X, то  $B(x_*;\varepsilon) \cap X \neq \emptyset$  для любого  $\varepsilon > 0$  (определение 1.2.3). Поэтому для каждого  $\varepsilon_k$  существует точка  $x_k \in B(x_*;\varepsilon_k) \cap X$ , причем  $x_k \neq x_*$ . Поскольку

$$\|\boldsymbol{x}_k - \boldsymbol{x}_*\| < \varepsilon_k$$

по построению, и  $\varepsilon_k \to 0$ , то  $\|\boldsymbol{x}_k - \boldsymbol{x}_*\| \to 0$ , т.е.  $\boldsymbol{x}_k \to \boldsymbol{x}_*$ .

Обратно, пусть существует последовательность  $(x_k)$  в  $X, x_k \to x_*$  и  $x_k \neq x_*$  для всех  $k \in \mathbb{N}$ . Докажем, что  $x_*$  является предельной точкой множества X, т.е.  $\stackrel{\circ}{B}(x_*;\varepsilon) \cap X \neq \emptyset$  для любого  $\varepsilon > 0$ .



**Теорема 1.3.9.** Пусть последовательность  $(x_k)_{k=1}^{\infty}$  имеет предел. Тогда этот предел единственен.

Доказательство. Предположим, что последовательность  $(x_k)$  имеет два предела,  $x'_*, x''_* \in E$ ,  $x'_* \neq x''_*$ . Пусть V' и V'' — окрестности  $x'_*$  и  $x''_*$ , соответственно, и  $V' \cap V'' = \emptyset$  (например,  $V' = B(x'_*; \delta)$  и  $V'' = B(x'_*; \delta)$ , где  $\delta = \frac{1}{2} \|x'_* - x''_*\|$ ). Тогда, поскольку  $x'_* = \lim_{k \to \infty} x_k$ , то существует такое  $N' \in \mathbb{N}$ , что  $x_k \in V'$  для всех k > N'. Поскольку и  $x''_* = \lim_{k \to \infty} x_k$ , то существует  $N'' \in \mathbb{N}$ , для которого  $x_k \in V''$  для всех k > N''. Но тогда  $x_k \in V' \cap V'' = \emptyset$  для всех  $k > \max\{N', N''\}$ , что является противоречием.

**Теорема 1.3.10.** Пусть  $(x_k)_{k=1}^{\infty}$  сходящаяся последовательность в E, u  $x_* = \lim_{k \to \infty} x_k$ . Если  $(x_{k_l})_{l=1}^{\infty}$  — произвольная подпоследовательность последовательности  $(x_k)_{k=1}^{\infty}$ , то она также является сходящейся,  $u \lim_{l \to \infty} x_{k_l} = x_*$ .

Доказательство. Пусть V — окрестность точки  $\boldsymbol{x}_*$ . Поскольку  $\boldsymbol{x}_k \to \boldsymbol{x}_*$ , то существует  $N \in \mathbb{N}$ , для которого  $\boldsymbol{x}_k \in V$  для всех k > N. Если  $(x_{k_l})_{l=1}^{\infty}$  — подпоследовательность последовательности  $(x_k)_{k=1}^{\infty}$ , то  $l \leq k_l$ . Поэтому, если l > N, то  $k_l > N$ , и  $\boldsymbol{x}_{k_l} \in V$ . Таким образом,  $\boldsymbol{x}_{k_l} \to \boldsymbol{x}_*$  при  $l \to \infty$ .

- **Утверждение 1.3.11.** (a) Пусть E является одним из пространств  $\ell_1, \ \ell_2, \ \ell_\infty$ . Если  $\mathbf{x}_k \to \mathbf{x}_*$  в E, где  $\mathbf{x}_k = (x_k^1, \ldots, x_k^j, \ldots)$  и  $\mathbf{x}_* = (x_*^1, \ldots, x_*^j, \ldots)$ , то для кажедого  $j \in \mathbb{N}$  имеем  $x_*^j = \lim_{k \to \infty} x_k^j$ .
  - (b) Если  $E = \mathcal{F}_b([a,b];\mathbb{K})$ ,  $u f_k \to f_*$  в E, то для кажедого  $t \in [a,b]$  имеем  $f_*(t) = \lim_{k \to \infty} f_k(t)$ .

#### 1.3. ПОСЛЕДОВАТЕЛЬНОСТИ В ЛНП

Доказательство. (a) Доказательство проведем для случая  $E = \ell_1$ . Остальные случаи рассматриваются аналогично.

Пусть  $x_k \to x_*$  в  $\ell_1$ . Тогда для произвольного j имеем:

$$|x_k^j - x_*^j| \le \sum_{i=1}^{\infty} |x_k^i - x_*^i| = \|\boldsymbol{x}_k - \boldsymbol{x}_*\|_1 \to 0$$

по утверждению 1.3.5.

(b) Пусть  $f_k \to f_*$  в  $\mathcal{F}_b([a,b];\mathbb{K})$ . Для произвольного  $t \in [a,b]$  имеем

$$|f_k(t) - f_*(t)| \le \sup_{s \in [a,b]} |f_k(s) - f_*(s)| = ||f_k - f_*||_{\infty} \to 0,$$

поскольку  $f_k \to f_*$ .

Пример 1.3.12. 1. Рассмотрим последовательность  $(f_n)_{n=1}^{\infty}$  в  $\mathcal{F}_b([0,1];\mathbb{R})$  для  $f_n(t)=e^{t/n}$ .

Если эта последовательность является сходящейся, и  $f_*$  является ее пределом, то для каждого  $t \in [0,1]$  имеем, что

$$f_*(t) = \lim_{n \to \infty} e^{\frac{t}{n}} = e^0 = 1.$$

Теперь проверим действительно ли  $f_n \to f_*$  в  $\mathcal{F}_b([0,1];\mathbb{R})$ . Для этого вычислим  $||f_n - f_*||_{\infty}$ . Имеем (см. рис. 1.6):

$$||f_n - f_*||_{\infty} = \sup_{t \in [0,1]} |e^{\frac{t}{n}} - 1| = e^{\frac{1}{n}} - 1.$$

Поэтому,

$$\lim_{n \to \infty} ||f_n - f_*||_{\infty} = \lim_{n \to \infty} (e^{\frac{1}{n}} - 1) = 0,$$

и, следовательно,  $f_n \to f_*$  в  $\mathcal{F}_b([0,1];\mathbb{R}).$ 

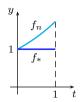


Рис. 1.6: Вычисление  $||f_n - f_*||_{\infty}$ .

2. Пусть теперь  $f_n(t) = t^n$  в  $\mathcal{F}_b([0,1];\mathbb{R})$ . Предполагая, что эта последовательность является сходящейся в  $\mathcal{F}_b([0,1];\mathbb{R})$ , и  $f_*$  суть ее предел, для каждого  $t \in [0,1]$  имеем

$$f_*(t) = \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} t^n = \begin{cases} 0, & 0 \le t < 1, \\ 1, & t = 1. \end{cases}$$



Рис. 1.7: Вычисление  $||f_n - f_*||_{\infty}$ .

Для  $||f_n - f||_{\infty}$  имеем (см. рис. 1.7):

$$||f_n - f_*||_{\infty} = \sup_{t \in [0,1]} |f_n(t) - f_*(t)| = \sup_{t \in [0,1]} t^n = 1.$$

При этом,

$$\lim_{n \to \infty} ||f_n - f_*||_{\infty} = \lim_{n \to \infty} 1 = 1 \neq 0,$$

и, следовательно,  $f_n \not\to f_*$  в  $\mathcal{F}_b([0,1];\mathbb{R})$ .

## 1.4 Полнота. Банаховые пространства.

Определение 1.4.1. Последовательность  $(x_k)_{k=1}^{\infty}$  в  $X \subset E$  называется  $\phi y + \partial a m e m a n b h o \ddot{u}$  или  $n o c n e \partial o b a m e n b h o c m b o K o u u$ , если для

любого  $\varepsilon > 0$  существует такое  $N \in \mathbb{N}$ , что

$$\|\boldsymbol{x}_{k+p} - \boldsymbol{x}_k\| < \varepsilon$$

для всех k > N и  $p \in \mathbb{Z}_+$ .

**Утверждение 1.4.2.** Сходящаяся последовательность в E является фундаментальной.

Доказательство. Пусть  $x_k \to x_*$ . Это эквивалентно тому, что  $\|x_k - x_*\| \to 0$ . Поэтому, для заданного  $\varepsilon > 0$  существует  $N \in \mathbb{N}$  для которого  $\|x_k - x_*\| < \frac{\varepsilon}{2}$  для k > N. Поэтому, если k > N, то и k + p > N для  $p \in \mathbb{Z}_+$ , и, следовательно,

$$\begin{aligned} \|\boldsymbol{x}_{k+p} - \boldsymbol{x}_k\| &= \left\| (\boldsymbol{x}_{k+p} - \boldsymbol{x}_*) - (\boldsymbol{x}_k - \boldsymbol{x}_*) \right\| \leq \\ &\leq \|\boldsymbol{x}_{k+p} - \boldsymbol{x}_*\| + \|\boldsymbol{x}_k - \boldsymbol{x}_*\| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

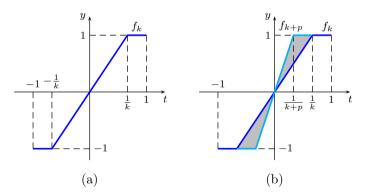


Рис. 1.8: (а) График функции  $f_k$ ; (b)  $||f_{k+p} - f_k||_1$  совпадает с площадью затемненной области.

 $\Pi pumep~1.4.3.~\Pi ycть~(f_k)_{k=1}^{\infty}$  — последовательность функций, показанных на рис. 1.8~(a), в  $\mathcal{C}([-1,1];\mathbb{R})$  с нормой

$$||f||_1 = \int_{-1}^1 |f(t)| dt.$$

35

Тогда (см. рис. 1.8 (b))

$$||f_{k+p} - f_k||_1 = \int_{-1}^1 |f_{k+p}(t) - f_k(t)| dt = \left(\frac{1}{k} - \frac{1}{k+p}\right) < \frac{1}{k}.$$

Поэтому последовательность  $(f_k)_{k=1}^{\infty}$  является фундаментальной в  $(\mathcal{C}([-1,1];\mathbb{R}),\|\cdot\|_1).$ 

**Определение 1.4.4.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство. Подмножество  $X \subset E$  называется *ограниченным*, если существует такое  $C \in \mathbb{R}_+$ , что  $\|\boldsymbol{x}\| \leq C$  для всех  $\boldsymbol{x} \in X$ .

Последовательность  $(x_k)_{k=1}^{\infty}$  в E называется ограниченной, если множество  $X = \{x_k : k \in \mathbb{N}\}$  является ограниченным.

Пример 1.4.5. 1. Шар  $B(x_0;r)$  в E является ограниченным, поскольку для произвольного  $x \in B(x_0;r)$  имеем:

$$\|x\| = \|x - x_0 + x_0\| \le \|x - x_0\| + \|x_0\| < r + \|x_0\| = C.$$

2. Последовательность  $(k e_k)_{k=1}^{\infty}$  в  $\ell_1$  не является ограниченной, поскольку

$$||ke_k||_1 = k||e_k||_1 = k, \qquad k \in \mathbb{N}.$$

3. Рассмотрим последовательность функций  $f_n$  в  $\mathcal{C}([0,1];\mathbb{R})$ , показанной на рис. 1.9. Тогда  $||f_n||_{\infty} = n$ , и последовательность  $(f_n)_{n=1}^{\infty}$  не является ограниченной в  $\mathcal{C}([0,1];\mathbb{R})$ .

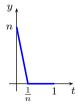


Рис. 1.9: График функции  $f_n$ .

4. Рассмотрим последовательность тех же функций (см. рис. 1.9) в пространстве  $\mathcal{C}([0,1];\mathbb{R})$  с нормой  $\|\cdot\|_1$ ,

$$||f||_1 = \int_0^1 |f(t)| dt.$$

Поскольку  $||f_n||_1 = \frac{1}{2}$  для всех  $n \in \mathbb{N}$ , последовательность  $(f_n)_{n=1}^{\infty}$  является ограниченной в линейном нормированном пространстве  $(\mathcal{C}([0,1];\mathbb{R}), \|\cdot\|_1)$ .

**Утверждение 1.4.6.** Фундаментальная последовательность ограничена.

Доказательство. Пусть  $(x_k)_{k=1}^{\infty}$  — фундаментальная последовательность в  $(E, \|\cdot\|)$ . Поскольку

$$ig|\|oldsymbol{x}_{k+p}\|-\|oldsymbol{x}_k\|ig|\leq \|oldsymbol{x}_{k+p}-oldsymbol{x}_k\|$$

(утверждение 1.1.6 (c)), то последовательность ( $\|\boldsymbol{x}_k\|$ ) $_{k=1}^{\infty}$  действительных чисел будет фундаментальной, а значит ограниченной (лемма I.2.4.15), т.е.

$$\|\boldsymbol{x}_k\| \leq C$$

для некоторого  $C \in \mathbb{R}_+$ . Но это и означает ограниченность последовательности  $(\boldsymbol{x}_k)_{k=1}^{\infty}$ .

**Следствие 1.4.7.** Если последовательность  $(x_n)_{n=1}^{\infty}$  в E сходится, то она ограничена.

Доказательство. Поскольку сходящаяся последовательность является фундаментальной (утверждение 1.4.2), то она ограничена согласно утверждению 1.4.6.

Определение 1.4.8. Линейное нормированное пространство  $(E, \|\cdot\|)$  называется *полным* или *банаховым*, если всякая фундаментальная последовательность в E является сходящейся.

Пример 1.4.9. 1. Пространство ( $\mathbb{K}^n, \|\cdot\|_2$ ) является полным. Для случая  $\mathbb{K} = \mathbb{R}$  это доказано в теореме II.10.2.12.

Если  $\mathbb{K} = \mathbb{C}$ , то это также верно, поскольку последовательность  $(z_k)_{k=1}^{\infty}$  в  $\mathbb{C}^n$ ,

$$\mathbf{z}_k = (z_k^1, \dots, z_k^n)^t = (x_k^1 + iy_k^1, \dots, x_k^n + iy_k^n)^t \in \mathbb{C}^n$$

сходится тогда и только тогда, когда сходится каждая из последовательностей

$$(x_k^1)_{k=1}^{\infty}, \quad (y_k^1)_{k=1}^{\infty}, \qquad \dots, \qquad (x_k^n)_{k=1}^{\infty}, \quad (y_k^n)_{k=1}^{\infty},$$

т.е когда сходится последовательность  $(\tilde{\pmb{z}}_{\pmb{k}})_{k=1}^\infty$  в  $\mathbb{R}^{2n}$ , где

$$\tilde{\boldsymbol{z}}_{\boldsymbol{k}} = (x_k^1, y_k^1, \dots, x_k^n, y_k^n)^t \in \mathbb{R}^{2n}.$$

- 2. Пространство ( $\mathbb{K}^n$ ,  $\|\cdot\|$ ) с произвольной нормой  $\|\cdot\|$  является банаховым, поскольку в конечномерном пространстве все нормы эквивалентны норме  $\|\cdot\|_2$  (теорема 1.1.19), а сходимость относительно одной нормы влечет за собой сходимость в любой ей эквивалентной норме (утверждение 1.3.7).
- 3. Пусть  $E = \mathcal{P}_n([0,1];\mathbb{R})$  линейное пространство всех многочленов степени не выше n с действительными коэффициентами, рассмотренное как подпространство линейного нормированного пространства  $\mathcal{C}([0,1];\mathbb{R})$ . Тогда  $(E,\|\cdot\|_{\infty})$  является банаховым.

Действительно, многочлены  $f_0,\ldots,f_n$ , заданные как

$$f_0(t) = 1,$$
  $f_1(t) = t,$  ...,  $f_n(t) = t^n,$ 

образуют базис в  $\mathcal{P}_n([0,1],\mathbb{R})$  над  $\mathbb{R}$ , поскольку

$$p(t) = a_n t^n + \ldots + a_1 t + a_0 = a_n f_n + \ldots + a_1 f_1 + a_0 f_0.$$

Таким образом,  $\mathcal{P}_n([0,1],\mathbb{R})$  может рассматриваться как  $\mathbb{R}^{n+1}$ , но с нормой  $\|\cdot\|_{\infty}$  в  $\mathcal{C}([0,1];\mathbb{R})$ .

Согласно примеру 2,  $\mathcal{P}_n([0,1];\mathbb{R})$  является банаховым.

4. Линейное нормированное пространство  $(\mathcal{C}([-1,1];\mathbb{R}),\|\cdot\|_1)$ , рассмотренное в примере 1.4.3, не является банаховым. Рассмотренная в этом примере последовательность  $(f_k)_{k=1}^{\infty}$ , будучи фундаментальной, не является сходящейся, поскольку функции этой последовательности аппроксимируют в смысле нормы  $\|\cdot\|_1$  на  $\mathcal{C}([-1,1];\mathbb{R})$  любую из функций  $f_*^{\alpha}$ ,  $\alpha \in \mathbb{R}$ , где

$$f_*^{\alpha}(t) = \begin{cases} -1, & -1 \le t < 0, \\ \alpha, & t = 0, \\ 1, & 0 < t \le 1, \end{cases}$$

причем  $f_*^{\alpha} \notin \mathcal{C}([-1,1];\mathbb{R})$  для любого  $\alpha \in \mathbb{R}$  (см. рис. 1.10).

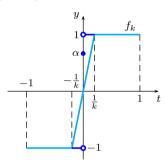


Рис. 1.10: Функции  $f_k$  аппроксимируют  $f_*^{\alpha}$  относительно  $\|\cdot\|_1$ .

**Теорема 1.4.10.** Линейные нормированные пространства  $\ell_1$  и  $\ell_2$  над  $\mathbb{K}$  являются банаховыми.

Доказательноство. Рассмотрим пространство  $\ell_1$  над  $\mathbb{R}$ . Пусть последовательность  $(\boldsymbol{x}_k)_{k=1}^{\infty}$  фундаментальна в  $\ell_1$ . Докажем, что она сходится в  $\ell_1$ , т.е. существует такой элемент  $\boldsymbol{x}_* \in \ell_1$ , что  $\|\boldsymbol{x}_k - \boldsymbol{x}_*\|_1 \to 0$ .

**1.** Найдем  $x_*$ . Пусть

$$x_k = (x_k^1, x_k^2, \ldots), \qquad x_k^1, x_k^2, \ldots \in \mathbb{R}.$$

Зафиксируем координату i, и рассмотрим последовательность чисел  $(x_k^i)_{k=1}^\infty$  в  $\mathbb{R}$ . Поскольку

$$|x_{k+p}^i - x_k^i| \le \sum_{j=1}^n |x_{k+p}^j - x_k^j| = \|\boldsymbol{x}_{k+p} - \boldsymbol{x}_k\|_1$$

для любого  $p \in \mathbb{Z}_+$ , то последовательность  $(x_k^i)_{k=1}^\infty$  элементов из  $\mathbb{K}$  является фундаментальной и, следовательно, сходящейся по критерию Коши (теорема I.2.4.7). Следовательно, существует предел

$$x_*^i = \lim_{k \to \infty} x_k^i \tag{1.3}$$

для всех  $i \in \mathbb{N}$ .

Положим

$$\boldsymbol{x}_* = (x_*^1, x_*^2, \ldots) \in \mathbb{R}^{\infty}.$$

**2.** Докажем, что  $\| \boldsymbol{x}_* - \boldsymbol{x}_k \|_1 \to 0$ . Зафиксируем  $n \in \mathbb{N}$ , и рассмотрим

$$\sum_{j=1}^{n} |x_{k+p}^{j} - x_{k}^{j}| \le ||\boldsymbol{x}_{k+p} - \boldsymbol{x}_{k}||_{1}.$$
 (1.4)

Возьмем произвольное  $\varepsilon > 0$ . Поскольку последовательность  $(\boldsymbol{x}_k)$  является фундаментальной в  $\ell_1$ , то существует  $N \in \mathbb{N}$ , для которого  $\|\boldsymbol{x}_{k+p} - \boldsymbol{x}_k\|_1 < \varepsilon$  для всех k > N и  $p \in \mathbb{Z}_+$ . Тогда для таких k и произвольных  $p \in \mathbb{Z}_+$  в силу (1.4) имеем, что

$$\sum_{j=1}^{n} |x_{k+p}^j - x_k^j| < \varepsilon. \tag{1.5}$$

Поскольку сумма в (1.5) конечна и функция  $|\cdot|$  непрерывна на  $\mathbb{R}$ , то, переходя к пределу в (1.5) для  $p \to \infty$  и используя (1.3), получаем:

$$\lim_{p \to \infty} \sum_{j=1}^{n} |x_{k+p}^{j} - x_{k}^{j}| = \sum_{j=1}^{n} \lim_{p \to \infty} |x_{k+p}^{j} - x_{k}^{j}| =$$

$$= \sum_{j=1}^{n} \left| \lim_{p \to \infty} x_{k+p}^{j} - x_{k}^{j} \right| = \sum_{j=1}^{n} |x_{*}^{j} - x_{k}^{j}| \le \varepsilon$$
(1.6)

для всех  $n\in\mathbb{N}$  и k>N. Теперь, переходя к пределу при  $n\to\infty$ , имеем

$$\|\boldsymbol{x}_* - \boldsymbol{x}_k\|_1 = \sum_{j=1}^{\infty} |x_*^j - x_k^j| = \lim_{n \to \infty} \sum_{j=1}^n |x_*^j - x_k^j| \le \varepsilon$$

для всех k > N. Это и означает, что  $\| \boldsymbol{x}_* - \boldsymbol{x}_k \|_1 \to 0$  при  $k \to \infty$ .

**3.** Докажем, что  $\boldsymbol{x}_* \in \ell_1$ . Поскольку  $\|\boldsymbol{x}_* - \boldsymbol{x}_k\|_1 \to 0$ , то существует такое  $N \in \mathbb{N}$ , что  $\|\boldsymbol{x}_* - \boldsymbol{x}_k\|_1 < 1$  для всех k > N. В частности,  $\|\boldsymbol{x}_* - \boldsymbol{x}_{N+1}\|_1 < 1$ . Таким образом,

$$\|\boldsymbol{x}_*\|_1 = \|\boldsymbol{x}_* - \boldsymbol{x}_{N+1} + \boldsymbol{x}_{N+1}\|_1 \le \|\boldsymbol{x}_* - \boldsymbol{x}_{N+1}\|_1 + \|\boldsymbol{x}_{N+1}\|_1 < \infty,$$

что доказывает, что  $x_* \in \ell_1$ .

Доказательство для  $\ell_2$  и для  $\mathbb{K}=\mathbb{C}$  проводится аналогично.

# Задачи

KP: 37.3, 34.1

 $\mathcal{A}P$ : 37 (a) M = [c, d], (6) M = (c, d), 34, 35, 36.

**Теорема 1.4.11.** Линейное нормированное пространство  $\mathcal{F}_b(\Omega; \mathbb{K})$  является банаховым.

Доказательство. Идея доказательства та же самая, что и теоремы 1.4.10. Пусть  $(f_k)_{k=1}^{\infty}$  — фундаментальная последовательность в  $\mathcal{F}_b(\Omega; \mathbb{K})$ . Докажем, что существует такая функция  $f_* \in \mathcal{F}_b(\Omega; \mathbb{K})$ , что  $||f_* - f_k||_{\infty} \to 0$ .

**1.** Найдем  $f_*$ . Зафиксируем  $\omega \in \Omega$ , и рассмотрим последовательность  $(f_k(\omega))_{k=1}^{\infty}$  действительных чисел, если  $\mathbb{K} = \mathbb{R}$ , или последовательность комплексных чисел, если  $\mathbb{K} = \mathbb{C}$ . Поскольку

$$|f_{k+p}(\omega) - f_k(\omega)| \le \sup_{\tau \in \Omega} |f_{k+p}(\tau) - f_k(\tau)| = ||f_{k+p} - f_k||_{\infty},$$

то последовательность  $(f_k(\omega))_{k=1}^{\infty}$  является фундаментальной. Поэтому существует предел, который и определяет значение функции  $f_*$  в точке  $\omega \in \Omega$ :

$$f_*(\omega) = \lim_{k \to \infty} f_k(\omega).$$

**2.** Докажем, что  $||f_* - f_k||_{\infty} \to 0$  при  $k \to \infty$ . Возьмем произвольное  $\varepsilon > 0$ . Поскольку последовательность  $(f_k)$  фундаментальна, то существует такое  $N \in \mathbb{N}$ , что для любого  $\omega \in \Omega$ 

$$|f_{k+p}(\omega) - f_k(\omega)| < \varepsilon, \tag{1.7}$$

при k > N и любом  $p \in \mathbb{Z}_+$ , поскольку

$$|f_{k+p}(\omega) - f_k(\omega)| \le \sup_{\tau \in \Omega} |f_{k+p}(\tau) - f_k(\tau)| = ||f_{k+p} - f_k||_{\infty} < \varepsilon.$$

Переходя к пределу в (1.7) при  $p \to \infty$  имеем

$$\lim_{p \to \infty} |f_{k+p}(\omega) - f_k(\omega)| = |\lim_{p \to \infty} f_{k+p}(\omega) - f_k(\omega)| =$$
$$= |f_*(\omega) - f_k(\omega)| \le \varepsilon.$$

Поскольку это неравенство имеет место для всех  $\omega \in \Omega$ , то

$$||f_* - f_k||_{\infty} = \sup_{\tau \in \Omega} |f_*(\tau) - f_k(\tau)| \le \varepsilon$$

для всех k>N. Это означает, что  $\|f_*-f_k\|_\infty \to 0$  при  $k\to\infty$ .

3. Докажем, что  $f_* \in \mathcal{F}_b(\Omega; \mathbb{K})$ . Ограниченность последовательности  $(f_k)$  следует из ее фундаментальности (утверждение 1.4.6), что означает, что  $||f_k||_{\infty} < C$  для некоторого  $C \in \mathbb{R}$  и всех  $k \in \mathbb{N}$ . Из сходимости последовательности к  $f_*$  следует, что существует  $N \in \mathbb{N}$ , для которого  $||f_* - f_{N+1}||_{\infty} < 1$ . Тогда

$$||f_*||_{\infty} = ||f_* - f_{N+1} + f_{N+1}||_{\infty} \le ||f_* - f_{N+1}||_{\infty} + ||f_{N+1}||_{\infty} < 1 + C < \infty. \quad \Box$$

**Утверждение 1.4.12.** Пусть  $(E, \|\cdot\|)$  — банахово пространство, а  $\tilde{E}$  — замкнутое линейное подпространство пространства E. Тогда  $(\tilde{E}, \|\cdot\|)$  — банахово пространство.

Доказательство. Пусть  $(x_k)_{k=1}^{\infty}$  — фундаментальная последовательность в  $\tilde{E}$ . Тогда эта последовательность является фундаментальной в E, а поэтому сходящейся в E, поскольку E банахово. Т.е. существует такой элемент  $x_* \in E$ , что  $x_k \to x_*$ . Но тогда  $x_*$  — предельная точка  $\tilde{E}$  (утверждение 1.3.8). А поскольку  $\tilde{E}$  замкнуто, и  $x_* \in E$  — предельная точка  $\tilde{E}$ , то  $x_* \in \tilde{E}$ .

**Утверждение 1.4.13.** Пространство  $C([a,b];\mathbb{K})$  является замкнутым подпространством пространства  $\mathcal{F}_b([a,b];\mathbb{K})$ .

Доказательство. Поскольку произвольная функция  $f \in \mathcal{C}([a,b],\mathbb{K})$ , будучи непрерывной на замкнутом отрезке [a,b], является ограниченной на [a,b] (теорема Вейерштрасса I.3.3.13), т.е.  $f \in \mathcal{F}_b([a,b];\mathbb{K})$ , то  $\mathcal{C}([a,b];\mathbb{K}) \subset \mathcal{F}_b([a,b];\mathbb{K})$ . Таким образом,  $\mathcal{C}([a,b];\mathbb{K})$  является линейным подпространством  $\mathcal{F}_b([a,b];\mathbb{K})$ . Докажем, что  $\mathcal{C}([a,b];\mathbb{K})$  замкнуто в  $\mathcal{F}_b([a,b];\mathbb{K})$ , т.е., если  $f_* \in \mathcal{F}_b([a,b];\mathbb{K})$  — предельная точка  $\mathcal{C}([a,b];\mathbb{K})$ , то  $f_* \in \mathcal{C}([a,b];\mathbb{K})$ .

Пусть  $t_0 \in [a,b]$  — произвольная точка [a,b], и докажем, что  $f_*$  непрерывна в  $t_0$ , т.е для произвольного  $\varepsilon>0$  существует  $\delta>0$ , для которого

$$|f_*(t) - f_*(t_0)| < \varepsilon$$

для всех  $t \in [a, b] \cap (t_0 - \delta, t_0 + \delta)$ .

Зададимся  $\varepsilon > 0$ , и найдем нужное  $\delta > 0$ . Поскольку  $f_*$  является предельной точкой  $\mathcal{C}([a,b];\mathbb{K})$ , то существует точка  $f \in \overset{\circ}{B}(f_*;\frac{\varepsilon}{3}) \cap \mathcal{C}([a,b];\mathbb{K})$ , т.е. такая непрерывная на [a,b] функция f, что

$$||f_* - f||_{\infty} < \frac{\varepsilon}{3}.$$

Но тогда

$$|f_*(t) - f(t)| < \frac{\varepsilon}{3} \tag{1.8}$$

для всех  $t \in [a, b]$ , поскольку

$$|f_*(t) - f(t)| \le \sup_{s \in [a,b]} |f_*(s) - f(s)| = ||f_* - f||_{\infty} < \frac{\varepsilon}{3}.$$

Поскольку функция f непрерывна в точке  $t_0$ , то существует такое  $\delta > 0$ , что

$$|f(t) - f(t_0)| < \frac{\varepsilon}{3} \tag{1.9}$$

для всех  $t \in [a, b] \cap (t_0 - \delta, t_0 + \delta)$ . Таким образом для таких t имеем:

$$|f_{*}(t) - f_{*}(t_{0})| = |f_{*}(t) - f(t) + f(t) - f(t_{0}) + f(t_{0}) - f_{*}(t_{0})| \le \le |f_{*}(t) - f(t)| + |f(t) - f(t_{0})| + |f(t_{0}) - f_{*}(t_{0})| < < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

где для оценки первого и третьего слагаемого в сумме использовалась оценка (1.8), а для оценки второго слагаемого использовалось (1.9).

Это доказывает непрерывность функции  $f_*$ , а значит  $f_* \in \mathcal{C}([a,b];\mathbb{K})$ , что и завершает доказательство замкнутости  $\mathcal{C}([a,b];\mathbb{K})$  в  $\mathcal{F}_b([a,b];\mathbb{K})$ .

**Теорема 1.4.14.** Пространство  $C([a,b]; \mathbb{K})$  является банаховым.

Доказательство. Согласно теореме 1.4.11, пространство  $\mathcal{F}_b([a,b];\mathbb{K})$  является банаховым, а  $\mathcal{C}([a,b];\mathbb{K})$  является замкнутым подпространством пространства  $\mathcal{F}_b([a,b];\mathbb{K})$  (утверждение 1.4.13). Поэтому,  $\mathcal{C}([a,b];\mathbb{K})$  является банаховым (утверждение 1.4.12).  $\square$ 

# 1.5 Плотные множества

**Определение 1.5.1.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство,  $X \subset E$ , и X' — множество всех предельных точек множества X. Множество  $\overline{X} = X \cup X'$  называется *замыканием* множества X.

2. Если  $E=\mathbb{R},$  а  $X=\mathbb{Q},$  то, поскольку  $\mathbb{Q}'=\mathbb{R},$  имеем, что  $\overline{\mathbb{Q}}=\mathbb{R}.$ 

**Утверждение 1.5.3.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство,  $X \subset E$  и  $\overline{X}$  — замыкание X в E. Тогда  $\overline{X}$  замкнуто в E.

Доказательство. По определению,  $\overline{X} = X \cup X'$ , где X' — множество предельных точек X. Согласно теореме 1.2.9 достаточно доказать, что

$$\overline{X}^c = (X \cup X')^c = X^c \cap X'^c$$

является открытым. Пусть  $\boldsymbol{x}^0 \in \overline{X}^c$ . Поскольку  $\boldsymbol{x}^0 \in X'^c$ , т.е.  $\boldsymbol{x}^0 \notin X'$ , то  $\boldsymbol{x}^0$  не является предельной точкой X, т.е. существует такое r>0, что  $\overset{\circ}{B}(\boldsymbol{x}^0;r)\cap X=\emptyset$ , или  $\overset{\circ}{B}(\boldsymbol{x}^0;r)\subset X^c$ . Также  $\boldsymbol{x}^0\in X^c$ . Поэтому,  $B(\boldsymbol{x}^0;r)=\overset{\circ}{B}(\boldsymbol{x}^0;r)\cup\{\boldsymbol{x}^0\}\subset X^c$ .

Докажем теперь, что  $B(\boldsymbol{x}^0;r)\subset X'^c$ , т.е.  $B(\boldsymbol{x}^0;r)\cap X'=\emptyset$ . Предположим, что это не так, т.е. существует  $\boldsymbol{x}\in B(\boldsymbol{x}^0;r)\cap X'$ . Поскольку  $B(\boldsymbol{x}^0;r)$  — открытое множество, то  $\boldsymbol{x}$  — внутренняя точка множества  $B(\boldsymbol{x}^0;r)$ . Это значит, что существует  $\varepsilon>0$ , для которого  $B(\boldsymbol{x};\varepsilon)\subset B(\boldsymbol{x}^0;r)$  (можно взять  $\varepsilon=r-\|\boldsymbol{x}_0-\boldsymbol{x}\|$ ). Поскольку  $B(\boldsymbol{x}^0;r)\cap X=\emptyset$ , то имеем, что и  $B(\boldsymbol{x};\varepsilon)\cap X=\emptyset$ , что противоречит тому, что  $\boldsymbol{x}$  является предельной точкой множества X, поскольку  $\boldsymbol{x}\in B(\boldsymbol{x}^0;r)\cap X'$  по предположению.

Таким образом,  $B(\boldsymbol{x}^0;r)\subset X^c$ ,  $B(\boldsymbol{x}^0;r)\subset (X')^c$ , и, следовательно,  $B(\boldsymbol{x}^0;r)\subset (\overline{X})^c$ , что доказывает, что множество  $\overline{X}^c$  открыто.  $\square$ 

**Утверждение 1.5.4.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство,  $X \subset E$ . Тогда

- (i)  $\overline{X} = \bigcap_{\gamma \in \Gamma} F_{\gamma}$ , где  $\{F_{\gamma}\}_{\gamma \in \Gamma}$  семейство всех замкнутых множеств  $F_{\gamma}$  таких, что  $F_{\gamma} \supset X$  для всех  $\gamma \in \Gamma$ .
- (ii)  $\overline{X}$  наименьшее замкнутое множество, содержащее X.
- Доказательство. (i) Докажем, что  $\overline{X} \subset \bigcap_{\gamma \in \Gamma} F_{\gamma}$ . Пусть  $\boldsymbol{x} \in \overline{X} = X \cup X'$ . Если  $\boldsymbol{x} \in X$ , то  $\boldsymbol{x} \in F_{\gamma}$  для всех  $\gamma \in \Gamma$ , поскольку  $X \subset F_{\gamma}$  по условию, т.е.  $\boldsymbol{x} \in \bigcap_{\gamma \in \Gamma} F_{\gamma}$ . Если  $\boldsymbol{x} \in X'$ , т.е.  $\boldsymbol{x}$  является предельной точкой X, то  $\boldsymbol{x}$  также является предельной точкой  $F_{\gamma}$  для всех  $\gamma \in \Gamma$ , поскольку  $X \subset F_{\gamma}$ . Но  $F_{\gamma}$  замкнуто. Следовательно  $\boldsymbol{x} \in F_{\gamma}$ , откуда следует, что  $\boldsymbol{x} \in \bigcap_{\gamma \in \Gamma} F_{\gamma}$ .

Теперь докажем, что  $\bigcap_{\gamma \in \Gamma} F_{\gamma} \subset \overline{X}$ . Пусть  $\boldsymbol{x} \in \bigcap_{\gamma \in \Gamma} F_{\gamma}$ . Поскольку  $\overline{X}$  является замкнутым множеством (утверждение 1.5.3), содержащим X, то  $\overline{X} = F_{\gamma^0}$  для некоторого  $\gamma^0 \in \Gamma$ . Следовательно,  $\boldsymbol{x} \in F_{\gamma^0} = \overline{X}$ .

(ii) Множество  $G = \bigcap_{\gamma \in \Gamma} F_{\gamma}$  является замкнутым (утверждение 1.2.11), содержит X (все  $F_{\gamma}$  содержат X), и, следовательно, является наименьшим среди всех замкнутых множеств, содержащих X.

**Определение 1.5.5.** Пусть  $(E,\|\cdot\|)$  — линейное нормированное пространство. Подмножество  $X\subset E$  называется *плотным* в E, если  $\overline{X}=E$ .

 $\Pi pumep~1.5.6.~$ Для  $E=\mathbb{R}$  множество  $\mathbb{Q}$  является плотным в  $\mathbb{R},$  поскольку  $\overline{\mathbb{Q}}=\mathbb{R}.$ 

**Утверждение 1.5.7.** Линейное пространство финитных последовательностей

$$c_{00} = \{ \boldsymbol{x} = (x_1, x_2, \dots) \in \mathbb{R}^{\infty} : \exists N \in \mathbb{N}, \ x_{N+1} = x_{N+2} = \dots = 0 \}$$

является плотным линейным подпространством пространства  $\ell_1$ .

Доказательство. Прежде всего заметим, что, если

$$\mathbf{x} = (x_1, x_2, \dots, x_N, 0, 0, \dots) \in c_{00}$$

для некоторого  $N \in \mathbb{N}$ , то

$$\|\boldsymbol{x}\|_1 = \sum_{k=1}^{\infty} |x_k| = \sum_{k=1}^{N} |x_k| < \infty,$$

т.е.  $x \in \ell_1$ . Следовательно,  $c_{00}$  является линейным подпространством пространства  $\ell_1$ .

Покажем теперь, что

$$\overline{c_{00}} = c_{00} \cup c'_{00} = \ell_1,$$

где  $c'_{00}$  — состоит из векторов из  $\ell_1$ , являющимися предельными точками  $c_{00}$  в смысле нормы в  $\ell_1$ , т.е. относительно нормы  $\|\cdot\|_1$ . Из этого сразу следует, что  $\overline{c_{00}} \subset \ell_1$ . Остается доказать, что  $\ell_1 \subset \overline{c_{00}} = c_{00} \cup c'_{00}$ .

Пусть  $\boldsymbol{x}=(x_1,x_2,\ldots)\in\ell_1$ . Если существует  $N\in\mathbb{N}$ , для которого  $x_{N+1}=x_{N+2}=\ldots=0$ , то  $\boldsymbol{x}\in c_{00}\subset\overline{c_{00}}$ . Если такого N не существует, то докажем, что  $\boldsymbol{x}$  является предельной точкой  $c_{00}$ , т.е  $\overset{\circ}{B}(\boldsymbol{x};r)\cap c_{00}\neq\emptyset$  для произвольного r>0.

Итак, пусть r>0 задано. Поскольку  ${\pmb x}=(x_1,x_2,\ldots)\in\ell_1,$  то ряд

$$\sum_{k=1}^{\infty} |x_k|$$

сходится. Это означает, что существует такое  $N \in \mathbb{N}$ , что

$$\sum_{k=N+1}^{\infty} |x_k| < r.$$

Положим

$$\mathbf{x}^0 = (x_1, \dots, x_N, 0, 0, \dots) \in c_{00}.$$

Тогда

$$\|\boldsymbol{x} - \boldsymbol{x}^0\|_1 = \|(x_1, \dots, x_N, x_{N+1}, \dots) - (x_1, \dots, x_N, 0, \dots)\|_1 =$$

$$= \|(0, \dots, 0, x_{N+1}, \dots)\|_1 = \sum_{k=N+1}^{\infty} |x_k| < r$$

в силу выбора числа N. Это означает, что  $\boldsymbol{x}^0 \in \overset{\circ}{B}(\boldsymbol{x};r)$ . По определению  $\boldsymbol{x}^0 \in c_{00}$ . Таким образом,  $\boldsymbol{x}^0 \in \overset{\circ}{B}(\boldsymbol{x};r) \cap c_{00}$ , т.е.  $\overset{\circ}{B}(\boldsymbol{x};r) \cap c_{00} \neq \emptyset$ . Следовательно,  $\boldsymbol{x} \in c'_{00}$ , что и оканчивает доказательство.

**Утверждение 1.5.8.** Линейное пространство финитных последовательностей

$$c_{00} = \{ \boldsymbol{x} = (x_1, x_2, \dots) \in \mathbb{R}^{\infty} : \exists N \in \mathbb{N}, \ x_{N+1} = x_{N+2} = \dots = 0 \}$$

является линейным подпространством  $\ell_{\infty}$ , но не является плотным в  $\ell_{\infty}$ .

Доказательство. Прежде всего заметим, что если

$$\boldsymbol{x} = (x_1, \dots, x_N, 0, \dots) \in \mathbb{R}_0^{\infty},$$

то

$$\|\boldsymbol{x}\|_{\infty} = \sup_{k \in \mathbb{N}} |x_k| = \max\{|x_1|, \dots, |x_N|\} < \infty,$$

что означает, что  $\boldsymbol{x} \in \ell_{\infty}$ . Следовательно  $c_{00} \subset \ell_{\infty}$ .

Теперь покажем, что точка  $x^0=(1,1,\ldots)$ , которая очевидно принадлежит  $\ell_{\infty}$ , не принадлежит  $\overline{c_{00}}$ . Действительно, для произвольной точки

$$\boldsymbol{x} = (x_1, \dots, x_N, 0, \dots) \in c_{00}$$

имеем

$$\|\boldsymbol{x}^0 - \boldsymbol{x}\|_{\infty} = \|(1, 1, \ldots) - (x_1, \ldots, x_N, 0, 0, \ldots)\|_{\infty} =$$
  
=  $\max\{|1 - x_1|, |1 - x_2|, \ldots, |1 - x_N|, 1\} \ge 1.$ 

Это означает, что  $\mathbf{x}^0 \notin \overset{\circ}{B}(\mathbf{x};1)$  для произвольной точки  $\mathbf{x} \in c_{00}$ . Таким образом,  $\overset{\circ}{B}(\mathbf{x}^0;1) \cap c_{00} = \emptyset$ , и  $\mathbf{x}^0$  не является предельной точкой  $c_{00}$ . Очевидно, что  $\mathbf{x}^0 \notin c_{00}$ . Таким образом  $\mathbf{x}^0 \notin \overline{c_{00}}$ . Это означает, что  $\overline{c_{00}} \neq \ell_{\infty}$ , и  $c_{00}$  не является плотным в  $\ell_{\infty}$ .

# Задачи

KP: 38 (2, 1, 6, 7).

 $\mathcal{I}P$ : 38 (4, 5, 7, 8, 9), 37.7

# 1.6 Теоремы Вейерштрасса

# 1.6.1 Аппроксимация периодических функций тригонометрическими многочленами

В этом разделе  $C_{2\pi}$  обозначает множество всех действительных непрерывных  $2\pi$ -периодических функций на  $\mathbb{R}$ .

**Лемма 1.6.1.** Множесство  $C_{2\pi}$  является линейным пространством над полем  $\mathbb{R}$ .

Доказательство. По определению  $f \in \mathcal{C}_{2\pi}$  тогда и только тогда, когда  $f \in \mathcal{C}(\mathbb{R})$  и  $f(t+2\pi) = f(t)$  для всех  $t \in \mathbb{R}$ . Поэтому, если  $f, g \in \mathcal{C}_{2\pi}$ , то  $f+g \in \mathcal{C}(\mathbb{R})$  и

$$(f+g)(t+2\pi) = f(t+2\pi) + g(t+2\pi) = f(t) + g(t) = (f+g)(t),$$

т.е. f+g суть непрерывная  $2\pi$ -периодическая функция на  $\mathbb{R}$ , т.е.  $f+g\in\mathcal{C}_{2\pi}.$ 

Аналогично  $\lambda f \in \mathcal{C}_{2\pi}$ , если  $\lambda \in \mathbb{R}$  и  $f \in \mathcal{C}_{2\pi}$ .

**Теорема 1.6.2.** Линейное нормированное пространство  $(C_{2\pi}, \|\cdot\|_{\infty})$  является банаховым пространством.

Доказательство. Докажем, что  $\mathcal{C}_{2\pi}$  является замкнутым линейным подпространством пространства  $(\mathcal{F}_b(\mathbb{R}),\|\cdot\|)$ . Тогда, согласно утверждению 1.4.12,  $\mathcal{C}_{2\pi}$  будет банаховым пространством.

Вначале докажем, что  $C_{2\pi}$  является линейным подпространством пространства  $\mathcal{F}_b(\mathbb{R})$ . Действительно, если  $f \in C_{2\pi}$ , то в силу  $2\pi$ -периодичности f имеем, что  $f(t) = f(t+2\pi k)$  для всех  $k \in \mathbb{Z}$ , и, в частности, для такого  $k_0 \in \mathbb{Z}$ , чтобы  $t+2\pi k_0 \in [0,2\pi]$ . Поэтому

$$||f||_{\infty} = \sup_{t \in \mathbb{R}} |f(t)| = \sup_{t \in [0,2\pi]} |f(t)|.$$

Но f непрерывна на  $\mathbb{R}$ , поэтому она непрерывна на  $[0, 2\pi]$ , и следовательно, ограничена на компактном множестве  $[0, 2\pi]$  по теореме Вейерштрасса. Таким образом,  $||f||_{\infty} < \infty$ , и  $f \in \mathcal{F}_b(\mathbb{R})$ .

Теперь докажем замкнутость  $\mathcal{C}_{2\pi}$  в  $\mathcal{F}_b(\mathbb{R})$ . Предположим, что  $f_* \in \mathcal{F}_b(\mathbb{R})$  является предельной точкой  $\mathcal{C}_{2\pi}$ , и докажем, что  $f_* \in \mathcal{C}_{2\pi}$ , т.е.  $f_*$  является функцией непрерывной на  $\mathbb{R}$  и  $2\pi$ -периодической.

Для доказательства непрерывности  $f_*$  на  $\mathbb{R}$  возьмем произвольную точку  $t_0 \in \mathbb{R}$ , зададимся  $\varepsilon > 0$ , и найдем такое  $\delta > 0$ , что будет выполнено следующее условие:

$$\forall t \in \mathbb{R} : |t - t_0| < \delta \qquad \Longrightarrow \qquad |f_*(t) - f_*(t_0)| < \varepsilon. \tag{1.10}$$

Поскольку  $f_*$  является предельной точкой  $\mathcal{C}_{2\pi}$ , то существует функция  $f \in B(f_*, \frac{\varepsilon}{3}) \cap \mathcal{C}_{2\pi}$ . Используя эту функцию, имеем

$$|f_{*}(t) - f_{*}(t_{0})| = |f_{*}(t) - f(t) + f(t) - f(t_{0}) + f(t_{0}) - f_{*}(t_{0})| \le \le |f_{*}(t) - f(t)| + |f(t) - f(t_{0})| + |f(t_{0}) - f_{*}(t_{0})| \le \le ||f_{*} - f||_{\infty} + |f(t) - f(t_{0})| + ||f - f_{*}||_{\infty} < < \frac{\varepsilon}{3} + |f(t) - f(t_{0})| + \frac{\varepsilon}{3}.$$

$$(1.11)$$

Поскольку f является непрерывной на  $\mathbb{R}$ , а значит и в точке  $t_0$ , то существует такое  $\delta > 0$ , что

$$\forall t \in \mathbb{R} : |t - t_0| < \delta \implies |f(t) - f(t_0)| < \frac{\varepsilon}{3}.$$

Для такого  $\delta$  условие (1.10) выполнено в силу (1.11).

Для доказательства  $2\pi$ -периодичности  $f_*$  достаточно доказать, что для для произвольного  $t \in \mathbb{R}$  и любого  $\varepsilon > 0$  имеем

$$|f(t+2\pi) - f(t)| < \varepsilon.$$

Опять воспользуемся тем, что  $f_*$  является предельной точкой  $\mathcal{C}_{2\pi}$  и возьмем произвольную функцию  $f \in B(f_*, \frac{\varepsilon}{2}) \cap \mathcal{C}_{2\pi}$ , для которой, в частности, имеем, что  $f(t) = f(t+2\pi)$  для всех  $t \in \mathbb{R}$ . Таким образом,

$$|f_{*}(t+2\pi) - f_{*}(t)| = |f_{*}(t+2\pi) - f(t+2\pi) + f(t) - f_{*}(t)| \le$$

$$\le |f_{*}(t+2\pi) - f(t+2\pi)| + |f(t) - f_{*}(t)| \le$$

$$\le |f_{*} - f|_{\infty} + ||f - f_{*}||_{\infty} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Таким образом  $f_* \in \mathcal{C}_{2\pi}$ , что и заканчивает доказательство.  $\square$ 

Везде далее функции  $K_n \in \mathcal{C}_{2\pi}, n \in \mathbb{N}$ , определены как

$$K_n(t) = \left(\frac{1+\cos t}{2}\right)^n, \quad n \in \mathbb{N}.$$

**Лемма 1.6.3.** *Пусть* 

$$c_n = \int_{-\pi}^{\pi} K_n(t) \, dt.$$

Tог $\partial a$ 

$$c_n > \frac{4}{n+1}.\tag{1.12}$$

Доказательство. Действительно, поскольку подынтегральная функция четная, имеем

$$c_n = \int_{-\pi}^{\pi} K_n(t) dt = \int_{-\pi}^{\pi} \left(\frac{1 + \cos t}{2}\right)^n dt = 2 \int_0^{\pi} \left(\frac{1 + \cos t}{2}\right)^n dt.$$

Так как  $0 \le \sin t \le 1$  при  $t \in [0, \pi]$ , для таких t

$$\left(\frac{1+\cos t}{2}\right)^n \ge \left(\frac{1+\cos t}{2}\right)^n \sin t.$$

Поэтому,

$$2\int_0^{\pi} \left(\frac{1+\cos t}{2}\right)^n dt > 2\int_0^{\pi} \left(\frac{1+\cos t}{2}\right)^n \sin t \, dt =$$

$$= -\frac{2}{2^n} \int_0^{\pi} (1+\cos t)^n \, d(1+\cos t) =$$

$$= -\frac{2}{2^n} \frac{(1+\cos t)^{n+1}}{n+1} \Big|_{t=0}^{t=\pi} = \frac{4}{n+1},$$

откуда и следует утверждение.

**Лемма 1.6.4.** Пусть  $g \in C_{2\pi}$ . Тогда для любого  $a \in \mathbb{R}$ 

$$\int_{-\pi+a}^{\pi+a} g(t) \, dt = \int_{-\pi}^{\pi} g(t) \, dt.$$

*Доказательство.* Действительно,

$$\int_{-\pi+a}^{\pi+a} g(t) dt = \int_{-\pi+a}^{-\pi} g(t) dt + \int_{-\pi}^{\pi} g(t) dt + \int_{\pi}^{\pi+a} g(t) dt.$$
 (1.13)

Для первого интеграла имеем

$$\int_{-\pi+a}^{-\pi} g(t) dt = \begin{bmatrix} s = t + \pi, \\ t = s - \pi, \\ ds = dt, \\ t \to -\pi + a \Rightarrow s \to a, \\ t \to -\pi \Rightarrow s \to 0, \end{bmatrix} = \int_{a}^{0} g(s - \pi) ds =$$
$$= -\int_{0}^{a} g(s - \pi) ds.$$

Для третьего интеграла в (1.13), используя  $2\pi$ -периодичность g, имеем

$$\int_{\pi}^{\pi+a} g(t) dt = \begin{bmatrix} s = t - \pi, \\ t = s + \pi, \\ ds = dt, \\ t \to \pi \Rightarrow s \to 0, \\ t \to \pi + a \Rightarrow s \to a, \end{bmatrix} = \int_{0}^{a} g(s + \pi) ds = \int_{0}^{a} g(s + \pi) ds.$$

Таким образом из (1.13) получаем, что

$$\int_{-\pi+a}^{\pi+a} g(t) dt = -\int_{0}^{a} g(s-\pi) ds + \int_{-\pi}^{\pi} g(s) ds + \int_{0}^{a} g(s-\pi) ds =$$

$$= \int_{-\pi}^{\pi} g(s) ds.$$

Лемма 1.6.5. Пусть  $f,g \in \mathcal{C}_{2\pi}$ . Тогда для всех  $t \in \mathbb{R}$ 

$$\int_{-\pi}^{\pi} f(s)g(t-s) \, ds = \int_{-\pi}^{\pi} g(s)f(t-s) \, ds. \tag{1.14}$$

Доказательство. Делая замену переменной, имеем

$$\int_{-\pi}^{\pi} f(s)g(t-s) \, ds = \begin{bmatrix} u = t - s, \\ s = t - u, \\ ds = -du, \\ s \to -\pi \Rightarrow u \to t + \pi, \\ s \to \pi \Rightarrow u \to t - \pi \end{bmatrix} =$$

$$= -\int_{t+\pi}^{t-\pi} f(t-u)g(u) \, du = \int_{t-\pi}^{t+\pi} g(u)f(t-u) \, du =$$

$$= \int_{-\pi}^{\pi} g(u)f(t-u) \, du,$$

**53** 

где в последнем равенстве использовалась лемма 1.6.4.

П

**Теорема 1.6.6** (Валле-Пуссен). Пусть  $f \in C_{2\pi}$ . Обозначим

$$K_n(t) = \left(\frac{1 + \cos t}{2}\right)^n, \qquad c_n = \int_{-\pi}^{\pi} K_n(t) dt,$$

и положим

$$\tau_n^f(t) = \frac{1}{c_n} \int_{-\pi}^{\pi} f(s) K_n(t-s) \, ds. \tag{1.15}$$

Тогда

$$\lim_{n \to \infty} \tau_n^f = f$$

в банаховом пространстве  $(\mathcal{C}_{2\pi}, \|\cdot\|_{\infty})$ .



Рис. 1.11: График функции  $K_n(u)$  при  $n \gg 1$ .

*Идея доказательства теоремы 1.6.6.* Используя лемму *1.6.5*, имеем

$$\tau_n^f = \frac{1}{c_n} \int_{-\pi}^{\pi} f(s) K_n(t-s) \, ds = \frac{1}{c_n} \int_{-\pi}^{\pi} K_n(s) f(t-s) \, ds.$$

Так как f непрерывна на  $[0,2\pi]$ , то она равномерно непрерывна, и, следовательно,  $f(t-s)\approx f(t)$  для всех  $t\in[0,2\pi]$ , если  $|s|<\delta$  для достаточно малого  $\delta>0$ . Для этого  $\delta$  можно выбрать достаточно большое  $n\in\mathbb{N}$  с тем, чтобы  $K_n(s)\approx 0$  для  $s\in[-\pi,-\delta]\cup[\delta,\pi]$  (см. рис. 1.11). Тогда

$$\tau_n^f = \frac{1}{c_n} \int_{-\pi}^{\pi} K_n(s) f(t-s) \, ds \approx \frac{1}{c_n} \int_{-\delta}^{\delta} K_n(s) f(t-s) \, ds \approx$$

$$\approx \frac{1}{c_n} \int_{-\delta}^{\delta} K_n(s) f(t) ds = \frac{f(t)}{c_n} \int_{-\delta}^{\delta} K_n(s) ds \approx$$
$$\approx \frac{f(t)}{c_n} \int_{-\pi}^{\pi} K_n(s) ds = \frac{f(t)}{c_n} c_n = f(t).$$

Доказательство теоремы 1.6.6. Зафиксируем  $\varepsilon > 0$ , и докажем, что существует такое  $N \in \mathbb{N}$ , что для всех n > N и  $t \in \mathbb{R}$ :

$$|f(t) - \tau_n^f(t)| < \varepsilon.$$

Используя (1.14) и определение  $c_n$ , имеем

$$\begin{aligned}
|f(t) - \tau_n^f(t)| &= \left| f(t) - \frac{1}{c_n} \int_{-\pi}^{\pi} K_n(s) f(t-s) \, ds \right| = \\
&= \frac{1}{c_n} \left| f(t) c_n - \int_{-\pi}^{\pi} K_n(s) f(t-s) \, ds \right| = \\
&= \frac{1}{c_n} \left| f(t) \int_{-\pi}^{\pi} K_n(s) \, ds - \int_{-\pi}^{\pi} K_n(s) f(t-s) \, ds \right| = \\
&= \frac{1}{c_n} \left| \int_{-\pi}^{\pi} K_n(s) f(t) \, ds - \int_{-\pi}^{\pi} K_n(s) f(t-s) \, ds \right| = \\
&= \frac{1}{c_n} \left| \int_{-\pi}^{\pi} K_n(s) \left( f(t) - f(t-s) \right) \, ds \right| \le \\
&\le \frac{1}{c_n} \int_{-\pi}^{\pi} K_n(s) |f(t) - f(t-s)| \, ds.
\end{aligned} \tag{1.16}$$

Так как функция f непрерывна на  $[-\pi,\pi]$ , она равномерно непрерывна на  $[-\pi,\pi]$ , а значит и на  $\mathbb R$  в силу периодичности. Таким образом, существует  $\delta>0$ , для которого выполнено условие

$$t', t'' \in \mathbb{R}, |t' - t''| < \delta \implies |f(t') - f(t'')| < \frac{\varepsilon}{3}.$$
 (1.17)

Используя найденное  $\delta$ , представим последний интеграл в (1.16) как

$$\frac{1}{c_n} \int_{-\pi}^{\pi} = \frac{1}{c_n} \int_{-\pi}^{-\delta} + \frac{1}{c_n} \int_{-\delta}^{\delta} + \frac{1}{c_n} \int_{\delta}^{\pi}, \tag{1.18}$$

и оценим каждый из них.

Для среднего интеграла, используя (1.17), имеем

$$\frac{1}{c_n} \int_{-\delta}^{\delta} |f(t) - f(t - u)| K_n(u) du \le \frac{1}{c_n} \int_{-\delta}^{\delta} \frac{\varepsilon}{3} K_n(u) du = 
= \frac{\varepsilon}{3} \frac{1}{c_n} \int_{-\delta}^{\delta} K_n(u) du < \frac{\varepsilon}{3} \frac{1}{c_n} \int_{-\pi}^{\pi} K_n(u) du = \frac{\varepsilon}{3} \frac{1}{c_n} c_n = \frac{\varepsilon}{3}. \quad (1.19)$$

Теперь рассмотрим последний интеграл в (1.18). Так как функция  $f \in \mathcal{C}_{2\pi} \subset \mathcal{F}_b(\mathbb{R})$ , то  $\|f\|_{\infty} < \infty$ , и

$$|f(t)| < ||f||_{\infty}, \qquad t \in \mathbb{R}.$$

Поэтому, оценивая последний интеграл в (1.18), имеем

$$\frac{1}{c_n} \int_{\delta}^{\pi} |f(t) - f(t - u)| K_n(u) du \le 
\le \frac{1}{c_n} \int_{\delta}^{\pi} (|f(t)| + |f(t - u)|) K_n(u) du \le 
\le \frac{1}{c_n} \int_{\delta}^{\pi} 2||f||_{\infty} K_n(u) du = \frac{2||f||_{\infty}}{c_n} \int_{\delta}^{\pi} K_n(u) du. \quad (1.20)$$

Функция

$$K_n(u) = \left(\frac{1 + \cos u}{2}\right)^n$$

является убывающей на  $[\delta, \pi]$ . Поэтому, полагая,

$$\frac{1+\cos\delta}{2} = q < 1,$$

имеем, что

$$K_n(u) \le K_n(\delta) = q^n$$

и, продолжая оценивать последнее выражение в (1.20), получаем

$$\frac{2\|f\|_{\infty}}{c_n} \int_{\delta}^{\pi} K_n(u) \, du \le \frac{2\|f\|_{\infty}}{c_n} \int_{\delta}^{\pi} q^n \, du = \frac{2\|f\|_{\infty}}{c_n} q^n \int_{\delta}^{\pi} du =$$

#### 1.6. ТЕОРЕМЫ ВЕЙЕРІПТРАССА

$$= \frac{2\|f\|_{\infty}}{c_n} q^n(\pi - \delta) < \frac{2\|f\|_{\infty}}{c_n} q^n \pi < \frac{2\|f\|_{\infty}}{\frac{4}{n+1}} q^n \pi = \frac{\|f\|_{\infty} \pi}{2} (n+1) q^n,$$

где последнее неравенство получено с использованием оценки (1.12). Поскольку  $q \in (0,1)$ , то

$$\lim_{n \to \infty} (n+1)q^n = 0,$$

и, следовательно, существует N такое, что

$$\frac{\|f\|_{\infty}\pi}{2}(n+1)q^n < \frac{\varepsilon}{3}$$

для всех n > N. Таким образом,

$$\frac{1}{c_n} \int_{\delta}^{\pi} \left| f(t) - f(t - u) \right| K_n(u) \, du < \frac{\varepsilon}{3}, \qquad n > N. \tag{1.21}$$

Те же самые оценки имеют место и для первого интеграла в правой части в (1.18) (с тем же самым N), т.е. имеем

$$\frac{1}{c_n} \int_{-\pi}^{-\delta} |f(t) - f(t - u)| K_n(u) du < \frac{\varepsilon}{3}, \qquad n > N.$$
 (1.22)

Суммируя оценки, полученные в (1.19), (1.21) и (1.22), получаем, что

$$|f(t) - \tau_n^f(t)| < \varepsilon$$

при n>N и всех  $t\in\mathbb{R}$ , что и заканчивает доказательство.

**Определение 1.6.7.** Функция  $\tau_n \in \mathcal{C}_{2\pi}$ , определенная как

$$\tau_n(t) = a_0 + \sum_{k=1}^n a_k \cos kt + b_k \sin kt, \qquad a_k, b_k \in \mathbb{R},$$

где  $|a_n| + |b_n| \neq 0$ , называется тригонометрическим многочленом степени n.

**Утверждение 1.6.8.** Множество  $\mathcal{T}_{2\pi}$  всех тригонометрических многочленов является линейным подпространством пространства  $\mathcal{C}_{2\pi}$ .

Доказательство. Очевидно.

Утверждение 1.6.9. Пусть  $f \in C_{2\pi}$ ,  $u K_n(t) = \left(\frac{1+\cos t}{2}\right)^n$ . Тогда

$$\tilde{\tau}_n^f = \int_{-\pi}^{\pi} f(s) K_n(t-s) \, ds$$

является тригонометрическим многочленом степени не выше п.

Рассмотрим случай n = 1. Имеем

$$\tilde{\tau}_{1}^{f} = \int_{-\pi}^{\pi} f(s)K_{1}(t-s) ds = \int_{-\pi}^{\pi} f(s)\frac{1+\cos(t-s)}{2} ds =$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} f(s)(1+\cos t \cos s + \sin t \sin s) ds =$$

$$= \frac{\int_{-\pi}^{\pi} f(s) ds}{2} + \frac{\int_{-\pi}^{\pi} f(s) \cos s ds}{2} \cos t + \frac{\int_{-\pi}^{\pi} f(s) \sin s ds}{2} \sin t =$$

$$= a_{0}^{f} + a_{1}^{f} \cos t + b_{1}^{f} \sin t,$$

где

$$a_0^f = \frac{\int_{-\pi}^{\pi} f(s) \, ds}{2}, \quad a_1^f = \frac{\int_{-\pi}^{\pi} f(s) \cos s \, ds}{2}, \quad b_1^f = \frac{\int_{-\pi}^{\pi} f(s) \sin s \, ds}{2}.$$

Пусть

$$\tilde{\tau}_n^f(t) = \int_{-\pi}^{\pi} f(s) K_n(t-s) \, ds$$

является тригонометрическим многочленом степени не выше n. Тогда, учитывая, что

$$K_{n+1}(t) = \left(\frac{1+\cos t}{2}\right)^{n+1} = \frac{1+\cos t}{2} \left(\frac{1+\cos t}{2}\right)^n = \frac{1+\cos t}{2} K_n(t),$$

имеем

$$\begin{split} \tilde{\tau}_{n+1}^f(t) &= \int_{-\pi}^{\pi} f(s) K_{n+1}(t-s) \, ds = \\ &= \int_{-\pi}^{\pi} f(s) \frac{1 + \cos(t-s)}{2} K_n(t-s) \, ds = \\ &= \frac{1}{2} \int_{-\pi}^{\pi} f(s) \big( 1 + \cos t \cos s + \sin t \sin s \big) K_n(t-s) \, ds = \\ &= \frac{1}{2} \Big( \int_{-\pi}^{\pi} f(s) \, K_n(t-s) \, ds + \cos t \int_{-\pi}^{\pi} f(s) \cos s \, K_n(t-s) \, ds + \\ &\quad + \sin t \int_{-\pi}^{\pi} f(s) \sin s \, K_n(t-s) \, ds \Big) = \\ &= \frac{1}{2} \Big( \tilde{\tau}_n^f(t) + \cos t \, \tilde{\tau}_n^{f \cdot \cos}(t) + \sin t \, \tilde{\tau}_n^{f \cdot \sin}(t) \Big). \end{split}$$

По предположению,  $\tilde{\tau}_n^{f\cdot\cos}$  и  $\tilde{\tau}_n^{f\cdot\sin}$  являются тригонометрическими многочленами степени не выше n. Из формул разложения произведения косинусов и синусов в суммы следует, что  $\cos t\,\tilde{\tau}_n^{f\cdot\cos}(t)$  и  $\sin t\,\tilde{\tau}_n^{f\cdot\sin}(t)$  являются тригонометрическими многочленами степени не выше (n+1).

**Теорема 1.6.10** (вторая теорема Вейерштрасса). Линейное подпространство  $\mathcal{T}_{2\pi}$  всех тригонометрических многочленов плотно в банаховом пространстве  $\mathcal{C}_{2\pi}$  всех непрерывных периодических функций.

Доказательство. Действительно, если  $f_* \in \mathcal{C}_{2\pi}$  и  $f_* \notin \mathcal{T}_{2\pi}$ , то, согласно теореме 1.6.6, в любом r-шаре  $\overset{\circ}{B}(f_*;r)$  содержится тригонометрический многочлен  $\tau_n^{f_*}$  для достаточно большого  $n \in \mathbb{N}$ .

# Задачи

*KP*: 65 (1), 67 (
$$\ell_2$$
).  
 $\mathcal{A}P$ : 65 (2), 67 ( $\ell_\infty$ ), 67.1.

# 1.6.2 Аппроксимация непрерывных функций многочленами

**Лемма 1.6.11.** Для всех  $n \in \mathbb{N}$ :

$$\int_{-1}^{1} (1 - t^2)^n dt > \frac{1}{n+1}.$$

Доказательство. Поскольку подынтегральная функция является четной, то

$$\int_{-1}^{1} (1 - t^2)^n dt = 2 \int_{0}^{1} (1 - t^2)^n dt.$$

Для  $t \in [0,1]$  имеем

$$(1 - t^2)^n \ge (1 - t^2)^n t,$$

и, следовательно,

$$\int_{-1}^{1} (1 - t^{2})^{n} dt = 2 \int_{0}^{1} (1 - t^{2})^{n} dt \ge 2 \int_{0}^{1} (1 - t^{2})^{n} t dt =$$

$$= -\int_{0}^{1} (1 - t^{2})^{n} d(1 - t^{2}) =$$

$$= -\frac{(1 - t^{2})^{n+1}}{n+1} \Big|_{t=0}^{t=1} = \frac{1}{n+1}.$$

**Лемма 1.6.12.** Пусть  $f \in \mathcal{C}(\mathbb{R})$ , удовлетворяющая условию f(t) = 0 для всех  $t \notin [0,1]$ , и  $g \in \mathcal{C}(\mathbb{R})$ . Тогда для всех  $t \in [0,1]$  имеем

$$\int_{-1}^{1} f(s)g(t-s) \, ds = \int_{-1}^{1} g(s)f(t-s) \, ds.$$

Доказательство. Сделаем замену переменной в интеграле:

$$\int_{-1}^{1} f(s)g(t-s) ds = \begin{bmatrix} u = t - s, \\ s = t - u, \\ ds = -du, \end{bmatrix} \quad \begin{array}{l} s \to -1 \Rightarrow u \to t + 1, \\ s \to 1 \Rightarrow u \to t - 1 \end{bmatrix} =$$

$$= -\int_{t+1}^{t-1} f(t-u)g(u) du = \int_{t-1}^{t+1} f(t-u)g(u) du =$$

$$= -\int_{-1}^{t-1} f(t-u)g(u) du + \int_{-1}^{1} f(t-u)g(u) du +$$

$$+ \int_{1}^{t+1} f(t-u)g(u) du.$$

Если  $u \le t - 1$ , то  $t - u \ge 1$ , и f(t - u) = 0 по условию, т.е.

$$\int_{-1}^{t-1} f(t-u)g(u) \, du = 0.$$

Если  $u \ge 1$ , то  $t-u \le t-1 \le 0$ , поскольку  $t \le 1$  и f(t-u) = 0 по условию. А значит,

$$\int_{1}^{t+1} f(t-u)g(u) \, du = 0.$$

Отсюда следует, что

$$\int_{-1}^{1} f(s)g(t-s) \, ds = \int_{-1}^{1} f(t-u)g(u) \, du.$$

**Теорема 1.6.13.** Пусть  $f \in C(\mathbb{R})$  и f(t) = 0 при  $t \notin [0,1]$ . Положим

$$L_n(t) = (1 - t^2)^n, d_n = \int_{-1}^1 L_n(t) dt,$$

u nycmb

$$p_{2n}^f(t) = \frac{1}{d_n} \int_0^1 f(s) L_n(t-s) \, ds. \tag{1.23}$$

Tог $\partial a$ 

$$\lim_{n \to \infty} p_{2n}^f = f$$

в банаховом пространстве  $(\mathcal{C}([0,1]), \|\cdot\|_{\infty}).$ 

## 1.6. ТЕОРЕМЫ ВЕЙЕРШТРАССА

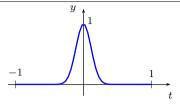


Рис. 1.12: График функции  $L_n(t)$  при  $n \gg 1$ .

Доказательство. Идея и ход доказательства повторяет доказательство теоремы 1.6.6.

Используя лемму 1.6.12, имеем

$$p_{2n}^f(t) = \frac{1}{d_n} \int_{-1}^1 f(t-u) L_n(u) du.$$

Пусть теперь  $\varepsilon>0$  задано. Покажем, что существует такое  $N\in\mathbb{N},$  что

$$\left| f(t) - \frac{1}{d_n} \int_{-1}^{1} f(t-u) L_n(u) \, du \right| < \varepsilon$$

для всех n > N и  $t \in [0, 1]$ .

Рассмотрим

$$\left| f(t) - \frac{1}{d_n} \int_{-1}^{1} f(t-u) L_n(u) du \right| = 
= \frac{1}{d_n} \left| f(t) d_n - \int_{-1}^{1} f(t-u) L_n(u) du \right| = 
= \frac{1}{d_n} \left| \int_{-1}^{1} f(t) L_n(u) du - \int_{-1}^{1} f(t-u) L_n(u) du \right| = 
= \frac{1}{d_n} \left| \int_{-1}^{1} (f(t) L_n(u) - f(t-u) L_n(u)) du \right| = 
= \frac{1}{d_n} \left| \int_{-1}^{1} (f(t) - f(t-u)) L_n(u) du \right| \le 
\le \frac{1}{d_n} \int_{-1}^{1} \left| f(t) - f(t-u) \right| L_n(u) du. \quad (1.24)$$

При  $t \in [0,1]$  и  $u \in [-1,1]$  имеем, что  $t-u \in [-1,2]$ . Функция f непрерывна на [-1,2] поэтому она равномерно непрерывна. Т.е. существует такое  $\delta > 0$ , что

$$|t' - t''| < \delta$$
  $|f(t') - f(t'')| < \frac{\varepsilon}{3}$ . (1.25)

Используя найденное  $\delta$  представим последний интеграл в (1.24) как

$$\frac{1}{d_n} \int_{-1}^{-\delta} + \frac{1}{d_n} \int_{-\delta}^{\delta} + \frac{1}{d_n} \int_{\delta}^{1}, \tag{1.26}$$

и оценим каждый из них.

Для среднего интеграла в (1.26), используя (1.25), имеем

$$\frac{1}{d_n} \int_{-\delta}^{\delta} |f(t) - f(t - u)| L_n(u) du \le \frac{1}{d_n} \int_{-\delta}^{\delta} \frac{\varepsilon}{3} L_n(u) du = 
= \frac{\varepsilon}{3} \frac{1}{d_n} \int_{-\delta}^{\delta} L_n(u) du < \frac{\varepsilon}{3} \frac{1}{d_n} \int_{-1}^{1} L_n(u) du = \frac{\varepsilon}{3}.$$

Рассмотрим теперь последний интеграл в (1.26). Так как функция f непрерывна на [-1,2], то она ограничена, т.е.  $||f||_{\infty} < \infty$ , и

$$|f(t)| \le ||f||_{\infty}, \qquad t \in [-1, 2].$$

Поэтому, оценивая последний интеграл в (1.26), имеем

$$\frac{1}{d_n} \int_{\delta}^{1} |f(t) - f(t - u)| L_n(u) du \le 
\le \frac{1}{d_n} \int_{\delta}^{1} (|f(t)| + |f(t - u)|) L_n(u) du \le 
\le \frac{1}{d_n} \int_{\delta}^{1} 2||f||_{\infty} L_n(u) du = \frac{2||f||_{\infty}}{d_n} \int_{\delta}^{1} L_n(u) du.$$

Функция

$$L_n(u) = (1 - u^2)^n$$

является убывающей на  $[\delta, 1]$ . Поэтому, полагая

$$1 - \delta^2 = r < 1.$$

имеем

$$L_n(u) < L_n(\delta) = r^n$$

и, продолжая оценивать последний интеграл, имеем

$$\frac{2\|f\|_{\infty}}{d_n} \int_{\delta}^{1} L_n(u) \, du \leq \frac{2\|f\|_{\infty}}{d_n} \int_{\delta}^{1} r^n \, du < 2\|f\|_{\infty} \frac{r^n}{d_n}.$$

Теперь, используя оценку в лемме 1.6.11, имеем

$$\frac{1}{d_n} \int_{\delta}^{1} |f(t) - f(t - u)| \, du \le 2||f||_{\infty} r^n (n + 1).$$

Поскольку  $r \in (0, 1)$ , то

$$\lim_{n \to \infty} r^n(n+1) = 0,$$

и, следовательно, существует N такое, что

$$2M\pi r^n(n+1) < \frac{\varepsilon}{3}$$

для всех n > N.

Те же самые рассуждения применительно к первому интегралу в (1.26) приводят к такой же оценке.

Таким образом, для n > N имеем, что

$$\frac{1}{d_n} \int_{-1}^{1} |f(t) - f(t - u)| L_n(u) du < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

что и заканчивает доказательство.

Лемма 1.6.14. Пусть  $f \in \mathcal{C}(\mathbb{R})$  такая, что f(t) = 0 для  $t \neq [0,1]$ , и  $L_n(t) = (1-t^2)^n$ ,  $t \in [-1,1]$ . Тогда

$$p_{2n}^f = \int_{-1}^1 f(s) L_n(t-s) \, ds$$

является многочленом степени не выше 2n.

Доказательство проведем по индукции на n. Для n=1 имеем

$$p_2^f(t) = \int_{-1}^1 f(s)L_1(t-s) \, ds = \int_{-1}^1 f(s) \left(1 - (t-s)^2\right) \, ds =$$

$$= \int_{-1}^1 f(s)(1-t^2+2ts-s^2) \, ds =$$

$$= \int_{-1}^1 f(s)(1-s^2) \, ds + t \int_{-1}^1 f(s)2s \, ds - t^2 \int_{-1}^1 f(s) \, ds.$$

Предположим, что  $p_{2n}^f$  является многочленом степени не выше 2n для любой функции  $f \in \mathcal{C}(\mathbb{R})$ , удовлетворяющей условию f(t)=0 для  $t \notin [0,1]$ . Тогда имеем

$$p_{2(n+1)}^{f}(t) = \int_{-1}^{1} f(s)L_{n+1}(t-s) ds =$$

$$= \int_{-1}^{1} f(s)L_{n}(t-s)(1-(t-s)^{2}) ds =$$

$$= \int_{-1}^{1} f(s)L_{n}(t-s)(1-t^{2}+2ts-s^{2}) ds =$$

$$= \int_{-1}^{1} f(s)(1-s^{2})L_{n}(t-s) ds + 2t \int_{-1}^{1} f(s)sL_{n}(t-s) ds -$$

$$- t^{2} \int_{-1}^{1} f(s)L_{n}(t-s) ds =$$

$$= p_{2n}^{f_{2}} + 2tp_{2n}^{f_{1}} - t^{2}p_{2n}^{f},$$

где функции  $f_2(s) = f(s)(1-s^2)$  и  $f_1(s) = f(s)s$  удовлетворяют условию  $f_2(t) = f_1(t) = 0$  при  $t \notin [0,1]$ . Очевидно, что  $p_{2(n+1)}$  является многочленом степени не выше 2n+2.

**Теорема 1.6.15** (первая теорема Вейерштрасса). Линейное пространство  $\mathcal{P}([a,b])$  всех многочленов, рассматриваемых как непрерывные функции на [a,b], является плотным линейным подпространством банахова пространства  $(\mathcal{C}([a,b]), \|\cdot\|_{\infty})$ .

### 1.6. ТЕОРЕМЫ ВЕЙЕРШТРАССА

Доказательство. Пусть  $g \in \mathcal{C}([a,b])$ . Рассмотрим функцию  $f \in \mathcal{C}([0,1])$ , заданную как

$$f(t) = g(a + (b - a)t).$$

Заметим, что при  $t \in [0,1]$  переменная

$$s = a + (b - a)t \tag{1.27}$$

пробегает отрезок [a,b]. Определим теперь функцию  $f_0\in\mathcal{C}([0,1])$  как

$$f_0(t) = f(t) - \alpha - \beta t, \tag{1.28}$$

где  $\alpha, \beta \in \mathbb{R}$  такие, что  $f_0(0) = f_0(1) = 0$ , т.е.

$$f(0) - \alpha = 0,$$
  $f(1) - \alpha - \beta = 0.$ 

Отсюда находим, что

$$\alpha = f(0), \qquad \beta = f(1) - f(0).$$

Наконец, рассмотрим функцию  $\tilde{f}_0 \in \mathcal{C}(\mathbb{R})$ , определенную как

$$\tilde{f}_0(t) = \begin{cases} 0, & t < 0, \\ f_0(t), & 0 \le t \le 1, \\ 0, & 1 < t, \end{cases}$$

Пусть  $\varepsilon>0$  задано. Используя теорему 1.6.13, найдем многочлен  $p^{\tilde{f}_0}$  такой, что

$$\sup_{t \in [0,1]} |\tilde{f}_0(t) - p^{\tilde{f}_0}(t)| = \sup_{t \in [0,1]} |f_0(t) - p^{\tilde{f}_0}(t)| < \varepsilon.$$
 (1.29)

Используя определение функции  $f_0$  в (1.28) имеем, что

$$f_0(t) - p^{\tilde{f}_0}(t) = f(t) - \alpha - \beta t - p^{\tilde{f}_0}(t) = f(t) - p^f(t),$$

где

$$p^f(t) = p^{\tilde{f}_0} + \beta t + \alpha$$

## 1.6. ТЕОРЕМЫ ВЕЙЕРІПТРАССА

является многочленом. Поэтому из (1.29) имеем, что

$$\sup_{t \in [0,1]} |f(t) - p^f(t)| < \varepsilon.$$

Из (1.27) находим, что

$$t = -\frac{a}{b-a} + \frac{s}{b-a},$$

и определим многочлен  $p^g$  как

$$p^g(s) = p^f\left(-\frac{a}{b-a} + \frac{s}{b-a}\right).$$

Тогда имеем, что

$$p^{g}(a + (b-a)t) = p^{f}(-\frac{a}{b-a} + \frac{1}{b-a}(a + (b-a)t)) = p^{f}(t),$$

и, следовательно,

$$\sup_{s \in [a,b]} |g(s) - p^g(s)| = \sup_{t \in [0,1]} |g(a - (b-a)t) - p^g(a + (b-a)t)| =$$

$$= \sup_{t \in [0,1]} |f(t) - p^f(t)| < \varepsilon,$$

что и заканчивает доказательство.

# 1.7 Компактные множества

## 1.7.1 Общие положения

**Определение 1.7.1.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство, и  $X \subset E$ .

Семейство  $\{U_\gamma\}_{\gamma\in\Gamma}$  подмножеств E, где  $\Gamma$  — некоторое множество индексов, называется nonpumuem множества X, если  $\cup_{\gamma\in\Gamma}U_\gamma\supset X$ .

Если семейство  $\{U_\gamma\}_{\gamma\in\Gamma}$  является покрытием  $X, \Gamma_0\subset\Gamma$ , и  $\{U_\gamma\}_{\gamma\in\Gamma_0}$  также является покрытием X, то семейство  $\{U_\gamma\}_{\gamma\in\Gamma_0}$  называется nodnokpumuem покрытия  $\{U_\gamma\}_{\gamma\in\Gamma}$ .

Покрытие  $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$  называется *открытым*, если каждое  $U_{\gamma}, \, {\gamma}\in\Gamma$ , является открытым подмножеством E,

Пример 1.7.2. Пусть  $E=\mathbb{R},\ X=(0,1),\ U_n=\left(\frac{1}{n},1\right),\ n\in\mathbb{N}=\Gamma.$  Поскольку

$$\bigcup_{n\in\mathbb{N}} \left(\frac{1}{n}, 1\right) = \bigcup_{n\in2\mathbb{N}} \left(\frac{1}{n}, 1\right) = (0, 1),$$

Семейство  $\mathcal{U} = \{U_n\}_{n \in \mathbb{N}}$  является открытым покрытием X, а семейство  $\{U_n\}_{n \in 2\mathbb{N}}$  является открытым подпокрытием покрытия  $\mathcal{U}$ .

**Определение 1.7.3.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство. Подмножество  $X \subset E$  называется *компактным*, если произвольное открытое покрытие X имеет конечное подпокрытие.

*Пример* 1.7.4. Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство.

- 1. Одноточечное множество  $X = \{a\}$  является компактным. Действительно, если  $X \subset \cup_{\gamma \in \Gamma} U_{\gamma}$ , то существует такое  $\gamma_0 \in \Gamma$ , что  $a \in U_{\gamma_0}$ . Поэтому для  $\Gamma_0 = \{\gamma_0\}$  покрытие  $\{U_{\gamma}\}_{\gamma \in \Gamma_0}$  является конечным подпокрытием покрытия  $\{U_{\gamma}\}_{\gamma \in \Gamma}$ .
- 2. Множество  $X = \{a_1, \dots, a_m\}$  также является компактным, поскольку, если  $\{a_1, \dots, a_m\} \subset \cup_{\gamma \in \Gamma} U_{\gamma}$ , то существуют  $\gamma_1, \dots, \gamma_m \in \Gamma$ , для которых

$$a_1 \in U_{\gamma_1}, \quad \ldots, \quad a_m \in U_{\gamma_m}.$$

Поэтому, полагая  $\Gamma_0 = \{\gamma_1, \dots, \gamma_m\}$ , имеем, что  $\{U_\gamma\}_{\gamma \in \Gamma_0}$  является конечным подпокрытием.

3. Для  $E = \mathbb{R}$  множество X = (0,1) не является компактным, поскольку покрытие  $\{U_n\}_{n\in\mathbb{N}}$  не имеет конечного подпокрытия.

Действительно, пусть  $M\subset \mathbb{N}$  и количество элементов  $|M|<\infty.$  Тогда

$$\bigcup_{n \in M} \left(\frac{1}{n}, 1\right) = \left(\frac{1}{\max M}, 1\right) \neq (0, 1).$$

**Утверждение 1.7.5.** Множество X = [0,1] является компактным в линейном нормированном пространстве  $E = \mathbb{R}$ .

Доказательство. Пусть  $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$  — произвольное открытое покрытие отрезка [0,1]. Определим множество

$$\tilde{X} = \big\{ x \in [0,1] : \exists \, \Gamma_0 \subset \Gamma, \ |\Gamma_0| < \infty, \ [0,x] \subset \cup_{\gamma \in \Gamma_0} U_\gamma \big\}.$$

Множество  $\tilde{X}$  не является пустым. Действительно, так как  $\{U_{\gamma}\}_{\gamma\in\Gamma}$  является покрытием отрезка [0,1], то  $0\in U_{\gamma_0}$  для некоторого  $\gamma_0\in\Gamma$ . А, поскольку  $U_{\gamma_0}$  является открытым множеством, то точка 0 является внутренней точкой  $U_{\gamma_0}$ , т.е. существует такое  $\delta>0$ , что  $(-\delta,\delta)\subset U_{\gamma_0}$ . Поэтому  $[0,\frac{\delta}{2}]\subset U_{\gamma_0}$ , и для  $\Gamma_0=\{\gamma_0\}$  отрезок  $[0,\frac{\delta}{2}]$  имеет конечное подпокрытие, а именно,  $\{U_{\gamma}\}_{\gamma\in\Gamma_0}$ . Таким образом  $\frac{\delta}{2}\in\tilde{X}$ .

Также заметим, что, если  $x_1 \in \tilde{X}$ , то  $x \in \tilde{X}$  для всех  $x \leq x_1$ , что следует непосредственно из определения  $\tilde{X}$  (для таких x конечное подпокрытие  $\{U_\gamma\}_{\gamma \in \Gamma_0}$  отрезка  $[0,x_1]$  также является конечным подпокрытием отрезка [0,x]).

Пусть  $x^* = \sup X$ . Покажем, что  $x^* \in \tilde{X}$  и  $x^* = 1$ , т.е.  $\tilde{X} = [0,1]$ . Поскольку  $\{U_\gamma\}_{\gamma \in \Gamma}$  является покрытием [0,1] и  $x^* \in [0,1]$  по определению, то  $x^* \in U_{\gamma^*}$  для некоторого  $\gamma^* \in \Gamma$ . Множество  $U_{\gamma^*}$  является открытым, и, следовательно, существует такое  $\delta^* > 0$ , что  $(x^* - \delta^*, x^* + \delta^*) \subset U_{\gamma^*}$ , а значит и  $[x^* - \frac{\delta^*}{2}, x^* + \frac{\delta^*}{2}] \subset U_{\gamma^*}$ .

Поскольку  $x^* - \frac{\delta^*}{2} < x^*$ , то  $x^* - \frac{\delta^*}{2} \in \tilde{X}$ , т.е. существует такое  $\Gamma_0 \subset \Gamma$ ,  $|\Gamma_0| < \infty$ , что  $\{U_\gamma\}_{\gamma \in \Gamma_0}$  является конечным открытым подпокрытием отрезка  $[0, x^* - \frac{\delta^*}{2}]$ . Но тогда для  $\Gamma_0^* = \Gamma_0 \cup \{\gamma^*\}$  семейство  $\{U_\gamma\}_{\gamma \in \Gamma_0^*}$  является конечным подпокрытием отрезка  $[0, x^* + \frac{\delta^*}{2}]$ . Поэтому  $x^* + \frac{\delta^*}{2} \in \tilde{X}$ , а значит, в частности  $x^* \in \tilde{X}$ . Кроме того, если  $x^* < 1$ , то, поскольку  $x^* + \frac{\delta^*}{2} > x^*$ ,  $x^*$  не может быть супремумом  $\tilde{X}$ . Следовательно,  $x^* = 1$ , и  $\tilde{X} = [0,1]$ , т.е. существует такое конечное  $\Gamma_0 \subset \Gamma$ , что  $\{U_\gamma\}_{\gamma \in \Gamma_0}$  является конечным подпокрытием отрезка [0,1].

**Определение 1.7.6.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство.

Семейство  $\{F_{\gamma}\}_{{\gamma}\in\Gamma}$  подмножеств E называется uenmpupo an-ным (соотв., uenmpupo annum a X), если для произвольного конечного  $\Gamma_0 \subset \Gamma$  имеем, что  $\Gamma_0 \in \Gamma_0$   $\Gamma_0 \neq \emptyset$  (соотв.,  $\Gamma_0 \cap \Gamma_0 \in \Gamma_0$   $\Gamma_0 \in \Gamma_0$ 

Пример 1.7.7. Семейство  $\left\{\left(0,\frac{1}{n}\right)\right\}_{n\in\mathbb{N}}$  является центрированным в (0,1). Действительно, для произвольного конечного  $M\subset\mathbb{N}$  имеем, что

$$(0,1)\cap \left(\bigcap_{n\in M} \left(0,\frac{1}{n}\right)\right) = (0,1)\cap \left(0,\frac{1}{\max M}\right) = \left(0,\frac{1}{\max M}\right) \neq \emptyset.$$

**Утверждение 1.7.8.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство, и  $X \subset E$ . Следующие условия эквивалентны.

- (i) Множеество X компактно.
- (ii) Любое центрированное в X семейство  $\{F_{\gamma}\}_{{\gamma}\in\Gamma}$  замкнутых множеств имеет непустое пересечение в X, т.е,

$$X \cap (\cap_{\gamma \in \Gamma} F_{\gamma}) \neq \emptyset.$$

Доказательство. (i)  $\Rightarrow$  (ii) Пусть X является компактным, а  $\{F_{\gamma}\}_{{\gamma}\in\Gamma}$  — произвольное семейство таких замкнутых множеств, что

$$X \cap \left(\bigcap_{\gamma \in \Gamma} F_{\gamma}\right) = \emptyset, \tag{1.30}$$

и докажем, что семейство  $\{F_{\gamma}\}_{{\gamma}\in\Gamma}$  не является центрированным в X.



Рис. 1.13: 
$$X \cap \left(\bigcap_{\gamma \in \Gamma} F_{\gamma}\right) = \emptyset \iff X \subset \left(\bigcap_{\gamma \in \Gamma} F_{\gamma}\right)^{c}$$
.

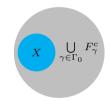


Рис. 1.14: 
$$X \subset \bigcup_{\gamma \in \Gamma_0} F_{\gamma}^c \iff X \cap \left(\bigcup_{\gamma \in \Gamma_0} F_{\gamma}^c\right)^c = \emptyset.$$

Действительно, см. рис. 1.13, из (1.30) следует, что

$$X \subset \left(\bigcap_{\gamma \in \Gamma} F_{\gamma}\right)^{c} = \bigcup_{\gamma \in \Gamma} F_{\gamma}^{c}.$$
 (1.31)

Поскольку  $F_{\gamma}$  является замкнутым множеством по предположению, то  $F_{\gamma}^c$  является открытым. Тогда (1.31) означает, что  $\{F_{\gamma}^c\}$  является открытым покрытием компактного множества X, и, следовательно, имеет конечное подпокрытие  $\{F_{\gamma}^c\}_{\gamma\in\Gamma_0}$ ,  $|\Gamma_0|<\infty$ , т.е.

$$X \subset \bigcup_{\gamma \in \Gamma_0} F_{\gamma}^c,$$

и, следовательно, см. рис. 1.14,

$$X \cap \left(\bigcup_{i=1}^{n} F_{\gamma_i}^c\right)^c = X \cap \left(\bigcap_{i=1}^{n} F_{\gamma_i}^{cc}\right) = X \cap \left(\bigcap_{i=1}^{n} F_{\gamma_i}\right) = \emptyset,$$

что и доказывает, что семейство  $\{F_{\gamma}\}_{{\gamma}\in \Gamma}$  не является центрированным в X.

(ii)  $\Rightarrow$  (i) Предположим, что выполнено условие в (ii), и докажем, что X является компактным множеством. Пусть  $\{U_{\gamma}\}_{\gamma \in \Gamma}$  открытое покрытие X, т.е  $U_{\gamma}$  являтся открытым множеством для каждого  $\gamma \in \Gamma$ , и

$$X \subset \bigcup_{\gamma \in \Gamma} U_{\gamma}.$$

Но тогда

$$X \cap \left(\bigcup_{\gamma \in \Gamma} U_{\gamma}\right)^{c} = X \cap \left(\bigcap_{\gamma \in \Gamma} U_{\gamma}^{c}\right) = \emptyset.$$

Из условия (ii) следует, что что система замкнутых множеств  $\{U_{\gamma}^c\}$  не может быть центрированной в X, т.е. существует конечная подсистема  $\{U_{\gamma}^c\}_{\gamma\in\Gamma_0},\ |\Gamma_0|<\infty,\ для$  которой

$$X \cap \left(\bigcap_{\gamma \in \Gamma_0} U_{\gamma}^c\right) = \emptyset,$$

т.е.

$$X\subset \big(\bigcap_{\gamma\in\Gamma_0}U_\gamma^c\big)^c=\bigcup_{\gamma\in\Gamma_0}U_\gamma^{cc}=\bigcup_{\gamma\in\Gamma_0}U_\gamma.$$

Следовательно, система  $\{U_{\gamma}\}_{{\gamma}\in\Gamma_0}$  является конечным открытым подпокрытием. Теперь компактность X следует из произвольности открытого покрытия  $\{U_{\gamma}\}_{{\gamma}\in\Gamma}$ .

**Следствие 1.7.9.** Замкнутый ограниченный шар  $B[\mathbf{0};1] \subset \ell_{\infty}$  не является компактным.

Доказательство. Для каждого  $n \in \mathbb{N}$  положим

$$e_n = (\underbrace{0,\ldots,0,1}_n,0,\ldots),$$

И

$$F = \{ \boldsymbol{e}_n : n \in \mathbb{N} \} \subset B[\boldsymbol{0}; 1].$$

Покажем, что F является замкнутым, доказав, что  $F' = \emptyset$ . Действительно, если  $\boldsymbol{x}^* \in F'$ , то существуют  $\boldsymbol{e}_{n_1}, \boldsymbol{e}_{n_2} \in \overset{\circ}{B}(\boldsymbol{x}^*; \frac{1}{2}) \cap F,$   $n_1 < n_2$ . Но тогда

$$\|e_{n_1} - e_{n_2}\|_{\infty} = \|e_{n_1} - x^* + x^* - e_{n_2}\|_{\infty} \le$$
  
 $\le \|e_{n_1} - x^*\|_{\infty} + \|x^* - e_{n_2}\|_{\infty} < \frac{1}{2} + \frac{1}{2} = 1,$ 

что противоречит тому, что

$$\|\boldsymbol{e}_{n_1} - \boldsymbol{e}_{n_2}\|_{\infty} = \|(0, \dots, 0, 1, 0, \dots, 0, -1, 0, \dots)\|_{\infty} = 1.$$

Теперь для каждого  $n \in \mathbb{N}$  положим  $F_n = F \setminus \{e_n\}$ . Поскольку  $F_n \subset F$ , то  $F'_n \subset F' = \emptyset$ , т.е  $F_n$  является замкнутым для каждого  $n \in \mathbb{N}$ .

Система замкнутых множеств  $\{F_n\}_{n\in\mathbb{N}}$  является центрированной в  $B[\mathbf{0};1]$ , поскольку для любого конечного  $M\subset\mathbb{N}$  имеем

$$B[\mathbf{0};1]\capig(igcap_{n\in M}F_nig)=igcap_{n\in M}F_n\supset\{oldsymbol{e}_{\max M+1},oldsymbol{e}_{\max M+2},\ldots\}
eq\emptyset.$$

Однако,

$$B[\mathbf{0};1] \cap \left(\bigcap_{n \in \mathbb{N}} F_n\right) = \bigcap_{n \in \mathbb{N}} F_n = \emptyset,$$

что и доказывает в силу утверждения 1.7.8, что  $B[{f 0};1]$  не является компактным.

**Утверждение 1.7.10.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство. Если  $X \subset E$  компактно, то X замкнуто и ограничено.

Доказательство. Докажем вначале, что X является ограниченным. Система  $\big\{B(\mathbf{0};n)\big\}_{n\in\mathbb{N}}$  является открытым покрытием X, поскольку

$$\bigcup_{n\in\mathbb{N}}B(\mathbf{0};n)=E\supset X.$$

В силу компактности X это открытое покрытие имеет конечное подпокрытие  $\{B(\mathbf{0};n)\}_{n\in M},\, M\subset \mathbb{N},\, |M|<\infty,\, \text{т.e.}$ 

$$X \subset \bigcup_{n \in M} B(\mathbf{0}; n) = B(\mathbf{0}; \max M),$$

что и доказывает ограниченность X.

Докажем, что X является замкнутым, доказав, что  $X^c$  является открытым. Заметим, что в силу ограниченности,  $X^c \neq \emptyset$ . Пусть  $x_0 \in X^c$ , и докажем, что  $x_0$  является внутренней точкой  $X^c$ , т.е. существует  $\delta > 0$ , для которого  $B(x_0; \delta) \subset X^c$ .

Множества  $B[\boldsymbol{x}_0;\frac{1}{n}]$  являются замкнутыми, и

$$\bigcap_{n\in\mathbb{N}}B[\boldsymbol{x}_0;\tfrac{1}{n}]=\{\boldsymbol{x}_0\}.$$

Поэтому, для открытых множеств  $B[\boldsymbol{x}_0;\frac{1}{n}]^c$  имеем

$$\bigcup_{n\in\mathbb{N}} B\big[\boldsymbol{x}_0; \tfrac{1}{n}\big]^c = \left(\bigcap_{n\in\mathbb{N}} B[\boldsymbol{x}_0; \tfrac{1}{n}]\right)^c = E\setminus \{\boldsymbol{x}_0\}\supset X.$$

Таким образом, система  $\{B[\boldsymbol{x}_0; \frac{1}{n}]^c\}_{n\in\mathbb{N}}$  является открытым покрытие X, и, в силу компактности X, имеем конечное подпокрытие X, т.е. существует  $M\subset\mathbb{N},\,|M|<\infty$  и

$$X \subset \bigcup_{n \in M} B[\boldsymbol{x}_0; \frac{1}{n}]^c = B[\boldsymbol{x}_0; \frac{1}{\max M}]^c.$$

Поэтому  $X \cap B[\boldsymbol{x}_0; \frac{1}{\max M}] = \emptyset$ , а значит и  $X \cap B(\boldsymbol{x}_0; \frac{1}{\max M}) = \emptyset$ , т.е.  $B(\boldsymbol{x}_0; \frac{1}{\max M}) \subset X^c$ . Таким образом,  $\boldsymbol{x}_0$  является внутренней точкой  $X^c$ .

**Лемма 1.7.11.** Пусть  $X \subset E$  и  $\mathcal{F} = \{F_{\gamma}\}_{{\gamma} \in \Gamma}$  семейство мноэксеств центрированных в X. Если

$$X = \bigcup_{k=1}^{m} X_k,$$

то существует такое  $k_0$ , что семейство  $\mathcal{F}$  является центрированной в  $X_{k_0}$ .

Доказательство. Действительно, если  $\mathcal{F}$  не является центрированной ни в одном из множеств  $X_k, \ k=1,\ldots,m,$  то для каждого k существует такое  $\Gamma_k \subset \Gamma, \ |\Gamma_k| < \infty,$  что

$$\left(\bigcap_{\gamma\in\Gamma_k} F_{\gamma}\right)\cap X_k=\emptyset.$$

Положим  $\Gamma_0 = \bigcup_{k=1}^m \Gamma_k$ . Имеем, что  $|\Gamma_0| < \infty$ , и

$$\begin{split} \big(\bigcap_{\gamma\in\Gamma_0}F_\gamma\big)\cap X &= \big(\bigcap_{\gamma\in\Gamma_0}F_\gamma\big)\cap \big(\bigcup_{k=1}^mX_k\big) = \bigcup_{k=1}^m\Big(\big(\bigcap_{\gamma\in\Gamma_0}F_\gamma\big)\cap X_k\Big) \subset \\ &\subset \bigcup_{k=1}^m\Big(\big(\bigcap_{\gamma\in\Gamma_k}F_\gamma\big)\cap X_k = \emptyset, \end{split}$$

что противоречит центрированности  $\mathcal{F}$  в X.

**Теорема 1.7.12** (Гейне-Борель). Множество  $X \subset \mathbb{R}^n$  компактно тогда и только тогда, когда оно замкнуто и ограничено.

Доказательство. Если множество X компактно, то оно замкнуто и ограничено (утверждение 1.7.10).

Пусть X замкнуто и ограничено. Докажем, что оно компактно для n=2. При произвольном n доказательство аналогично.

Пусть  $\mathcal{F} = \{F_\gamma\}_{\gamma \in \Gamma}$  — произвольное центрированное в X семейство замкнутых множеств. Докажем, что

$$\left(\bigcap_{\gamma\in\Gamma}F_{\gamma}\right)\cap X\neq\emptyset.$$

Поскольку множество X ограничено, то существует квадрат  $\Pi$  со стороной a, который полностью содержит X (см. рис. 1.15 (a)).

Разделим квадрат П на четыре равные части  $\Pi_k^1$  линиями, параллельными сторонам, положим  $X_k^1 = X \cap \Pi_k^1$ . Поскольку  $X = \bigcup_{k=1}^4 X_k^1$ , и семейство  $\mathcal F$  является центрированным в X, то существует  $X_{k_1}^1$  ( $X_{k_1}^1 = X^1$  на рис. 1.15 (a)), на котором система  $\mathcal F$  является

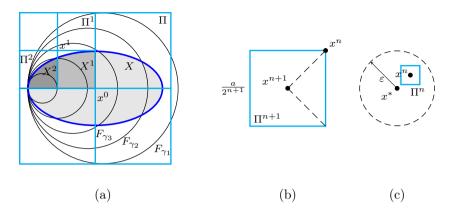


Рис. 1.15: Доказательство теоремы 1.7.12.

центрированной. Обозначим  $X^1_{k_1}=X^1,$   $\Pi^1=\Pi^1_{k_1},$  а центр квадрата  $\Pi^1$  через  $x^1.$  Квадрат  $\Pi^1$  имеет сторону длиной  $\frac{a}{2}.$ 

Разделим квадрат  $\Pi^1$  на четыре равные части  $\Pi_k^2$ . Рассмотрим множества  $X_k^2 = X \cap \Pi_k^2$ . Среди них существует множество  $X_{k_2}^2$ , на котором семейство  $\mathcal{F}$  является центрированным ( $X^2$  на рис. 1.15 (a)). Положим  $\Pi^2 = \Pi_{k_2}^2$  и  $X^2 = X_{k_2}^2$ . Длина стороны прямоугольника  $\Pi^2$  равна  $\frac{a}{2^2}$ , и пусть  $x^2$  — его центр.

Продолжая аналогичным образом получаем последовательность квадратов  $\Pi^n$ , у которых длины сторон равны  $\frac{a}{2^n}$ , их центров  $(x^n)_{n=1}^{\infty}$ , и подмножеств  $X^n = \Pi^n \cap X$  множества X, на каждом из которых семейство  $\mathcal{F}$  является центрированным.

Рассмотрим последовательность  $(x^n)_{n=1}$  в  $\mathbb{R}^2$ , и докажем, что она является фундаментальной, а значит сходящейся, поскольку  $\mathbb{R}^2$  банахово.

Действительно,  $x^n$  по построению является вершиной квадрата  $\Pi^{n+1}$  со стороной, длина которой равна  $\frac{a}{2^{n+1}}$ , а  $x^{n+1}$  является центром этого квадрата. Таким образом (см. рис. 1.15 (b)),

$$||x^n - x^{n+1}||_2 < \frac{a}{2^{n+1}}.$$

Поэтому, для произвольного  $p \in \mathbb{Z}_+$  имеем

$$\begin{split} \|x^n - x^{n+p}\|_2 &= \|x^n - x^{n+1} + x^{n+1} - x^{n+2} + \ldots + x^{n+p-1} - x^{n+p}\|_2 \leq \\ &\leq \|x^n - x^{n+1}\|_2 + \|x^{n+1} - x^{n+2}\|_2 + \ldots \\ &\quad + \|x^{n+p-1} - x^{n+p}\|_2 < \\ &< \frac{a}{2^{n+1}} + \frac{a}{2^{n+2}} + \ldots + \frac{a}{2^{n+p}} = \\ &= \frac{a}{2^{n+1}} \left(1 + \frac{1}{2} + \ldots + \frac{1}{2^{p-1}}\right) = \frac{a}{2^{n+1}} \frac{1 - \frac{1}{2^p}}{1 - \frac{1}{2}} < \\ &< \frac{a}{2^{n+1}} \frac{1}{1 - \frac{1}{2}} = \frac{a}{2^n}. \end{split}$$

Итак, существует  $x^* = \lim_{n \to \infty} x^n$ . Кроме этого,

$$||x^n - x^*||_2 = \lim_{p \to \infty} ||x^n - x^{n+p}||_2 \le \frac{a}{2^n},$$

а для произвольной точки  $x \in \Pi^n$  имеем

$$||x - x^*||_2 = ||x - x^n + x^n - x^*||_2 \le ||x - x^n||_2 + ||x^n - x^*||_2 \le \frac{a}{2^n} + \frac{a}{2^n} = \frac{a}{2^{n-1}}.$$
(1.32)

Докажем теперь, что

$$x^* \in \left(\bigcap_{\gamma \in \Gamma} F_{\gamma}\right) \cap X.$$

Для этого докажем, что  $x^* \in X$  и  $x^* \in F_\gamma$  для произвольного  $\gamma \in \Gamma$ . Поскольку множества X и  $F_\gamma$ ,  $\gamma \in \Gamma$ , замкнуты, то достаточно доказать, что  $x^*$  является предельной точкой каждого из множеств.

Пусть  $\varepsilon > 0$  задано, и возьмем n такое, что  $\frac{a}{2^{n-1}} < \varepsilon$ . Тогда в силу (1.32) имеем, что  $\Pi^n \subset B(x^*; \varepsilon)$ , см. рис. 1.15 (с). Следовательно,

$$B(x^*;\varepsilon)\supset\Pi^n\supset\Pi^n\cap X=X^n\supset X^n\cap F_{\gamma}.$$

Однако, семейство  $\mathcal{F}$  является центрированным на  $X^n$  по построению, и, следовательно,  $X^n \cap F_{\gamma} \neq \emptyset$  (Надо взять  $\Gamma_0 = \{\gamma\}$ ). Отсюда

следует, что  $B(x^*;\varepsilon) \cap X \neq \emptyset$ , и  $B(x^*;\varepsilon) \cap F_{\gamma} \neq \emptyset$  для произвольного  $\gamma \in \Gamma$ , Это означает, что  $x^*$  является предельной точкой X и  $F_{\gamma}$ , что и заканчивает доказательство.

Замечание 1.7.13. Как показывает следствие 1.7.9, замкнутое ограниченное множество в бесконечномерном пространстве не обязательно компактно.

**Определение 1.7.14.** Подмножество  $X \subset E$  называется nped komnakmhum, если множество  $\overline{X}$  является компактным.

**Утверждение 1.7.15.** Пусть X — компактное подмножество линейного нормированного пространства E,  $u \ Y \subset X$  замкнуто в E. Тогда множество Y компактно.

Доказательство. Пусть  $\{V_{\gamma}\}_{{\gamma}\in\Gamma}$  — открытое покрытие множества Y. Поскольку  $Y\subset X$ , то  $Y^c$  вместе с  $\{V_{\gamma}\}_{{\gamma}\in\Gamma}$  покрывает X. Так как Y замкнуто, то  $Y^c$  открыто. Таким образом,  $\{Y^c,V_{\gamma}\}_{{\gamma}\in\Gamma}$  является открытым покрытием компактного множества X, а значит имеет конечное подпокрытие  $\{Y^c,V_{\gamma}\}_{{\gamma}\in\Gamma_0}$ , где  $\Gamma_0$  — конечное множество. Поскольку  $Y\subset X$ , то  $\{Y^c,V_{\gamma}\}_{{\gamma}\in\Gamma_0}$  также является покрытием Y, т.е.

$$Y \subset Y^c \cup \left(\bigcup_{\gamma \in \Gamma_0} V_{\gamma}\right).$$

А так как  $Y \cap Y^c = \emptyset$ , то  $Y \subset \bigcup_{\gamma \in \Gamma_0} V_\gamma$ . Таким образом  $\{V_\gamma\}_{\gamma \in \Gamma_0}$  является конечным подпокрытием покрытия  $\{V_\gamma\}$ .

**Следствие 1.7.16.** Пусть X — компактное подмножество линейного нормированного пространства E,  $u \ Y \subset X$ . Тогда множество Y предкомпактно.

Доказательство. Поскольку X компактно, то оно замкнуто (утверждение 1.7.10). Поэтому  $\overline{Y} \subset X$  (утверждение 1.5.4). Теперь из замкнутости  $\overline{Y}$  и компактности X следует компактность  $\overline{Y}$  (утверждение 1.7.15), т.е. предкомпактность Y.

#### 1.7. КОМПАКТНЫЕ МНОЖЕСТВА

**Определение 1.7.17.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство. Подмножество  $X \subset E$  называется вполне ограниченным, если для каждого r > 0 существует такое конечное семейство точек  $a_1, \ldots, a_m \in E$ , что  $X \subset \bigcup_{k=1}^m B(a_k; r)$ .

При этом множество  $A = \{ {m a}_1, \dots, {m a}_m \}$  называется конечной r-сеткой.

Пример 1.7.18. 1. [a,b], [a,b) — вполне ограничены.

2.  $B(\mathbf{x}_0; R) \subset \mathbb{R}^n$  вполне ограничено.

**Утверждение 1.7.19.** Пусть E — линейное нормированное пространство, и  $X \subset E$  — вполне ограничено. Если  $Y \subset X$ , то Y также является вполне ограниченным.

Доказательство. Если  $A = \{a_1, \dots, a_m\}$  является конечной  $\varepsilon$ -сетью для X, то A также является  $\varepsilon$ -сетью для Y.

**Утверждение 1.7.20.** Вполне ограниченное множество является ограниченным.

Доказательство. Пусть X является вполне ограниченным. Пусть  $\{a_1,\dots,a_m\}\subset E$  — конечная 1-сетка для X, т.е.

$$X \subset \bigcup_{i=1}^{m} B(\boldsymbol{a}_i; 1). \tag{1.33}$$

Положим  $R = \max\{\|{\pmb a}_1\|,\dots,\|{\pmb a}_m\|\}+1,$  и докажем, что

$$\bigcup_{i=1}^m B(\boldsymbol{a}_i;1) \subset B(\boldsymbol{0};R).$$

Действительно, если  $\boldsymbol{x}\in \cup_{i=1}^m B(\boldsymbol{a}_i;1)$ , то  $\boldsymbol{x}\in B(\boldsymbol{a}_{i_0};1)$  для некоторого  $i_0$ . Но тогда

$$\|\boldsymbol{x}\| = \|\boldsymbol{x} - \boldsymbol{a}_{i_0} + \boldsymbol{a}_{i_0}\| \le \|\boldsymbol{x} - \boldsymbol{a}_{i_0}\| + \|\boldsymbol{a}_{i_0}\| < 1 + \max_{i=1,\dots,m} \|\boldsymbol{a}_i\| = R,$$

т.е.  $x \in B(\mathbf{0}; R)$ . Вследствие (1.33) имеем, что  $X \subset B(\mathbf{0}; R)$ , т.е. является ограниченным.

#### 1.7. КОМПАКТНЫЕ МНОЖЕСТВА

**Утверждение 1.7.21.** Пусть  $X \subset \mathbb{R}^n$ . Множество X вполне ограничено тогда и только тогда, когда X ограничено.

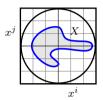


Рис. 1.16: Доказательство утверждения 1.7.21

Доказательство. Если множество X вполне ограничено, то оно ограничено (утверждение 1.7.20).

Предположим теперь, что X ограничено, и докажем, что X вполне ограничено. Рассмотрим случай n=2 (для произвольного  $n\in\mathbb{N}$  доказательство аналогично).

Поскольку X ограничено, то существует R>0 такое, что  $X\subset B(\mathbf{0};R)$ . Поэтому для  $\boldsymbol{x}=(x_1,x_2)\in X$  имеем, что

$$|x_i| \le \sqrt{|x_1|^2 + |x_2|^2} = ||\boldsymbol{x}|| < R, \quad i = 1, 2,$$

т.е.

$$X \subset \Pi = \{(x_1, x_2) \in \mathbb{R}^2 : |x_i| \le R, \ i = 1, 2\} = [-R, R] \times [-R, R].$$

Для заданного  $\varepsilon > 0$  разделим отрезок [-R,R] точками

$$-R = x^0 < x^1 < \dots < x^p = R$$

так, чтобы  $|x^i-x^{i-1}|<\frac{\varepsilon}{\sqrt{2}}$  для всех  $i=1,\ldots,p$ , и положим  ${\boldsymbol a}_{ij}=(x^i,x^j),\,i,j=0,\ldots,p$  (см. рис. 1.16). Очевидно, что

$$\Pi = \bigcup_{i,j=0}^{p-1} \Pi^{ij},$$

где  $\Pi^{ij} = [x^i, x^{i+1}] \times [x^j, x^{j+1}]$ . Если  ${\boldsymbol x} = (x_1, x_2) \in \Pi^{ij},$  то

$$\|\boldsymbol{x}-\boldsymbol{a}_{ij}\| = \sqrt{|x_1-x^i|^2 + |x_2-x^j|^2} < \sqrt{\frac{\varepsilon^2}{2} + \frac{\varepsilon^2}{2}} = \varepsilon.$$

Таким образом,  $\boldsymbol{x} \in B(\boldsymbol{a}_{ij}, \varepsilon)$ . Поскольку

$$X \subset \Pi = \bigcup_{i,j=0}^{p-1} \Pi^{ij},$$

то множество  $A = \{ {\pmb a}_{ij} : i,j = 0,\dots,p-1 \}$  образуют конечную  ${\varepsilon\text{-}\mathrm{cetb}}.$ 

**Утверждение** 1.7.22. Единичный замкнутый шар в  $\ell_{\infty}$  не является вполне ограниченным.

$$e_1 = (1, 0, 0, \ldots), \quad e_2 = (0, 1, 0, \ldots), \quad \ldots$$

Очевидно, что  $E \subset B[\mathbf{0};1]$  (для произвольного  $\mathbf{e}_n \in E$  имеем  $\|\mathbf{e}_n\|_{\infty} = 1$ ). Если  $B[\mathbf{0};1]$  вполне ограничено в  $\ell_{\infty}$ , то пусть  $A = \{\mathbf{a}_i : i = 1,\ldots,s\} \subset \ell_{\infty}$  является конечной  $\frac{1}{2}$ -сеткой для множества  $B[\mathbf{0};1]$ , т.е

$$B[\mathbf{0};1] \subset \bigcup_{i=1}^{s} B(\boldsymbol{a}_i;\frac{1}{2}).$$

Тогда A также является конечной  $\frac{1}{2}$ -сеткой для E. Поскольку количество шаров  $B(\boldsymbol{a}_i;\frac{1}{2})$  конечно, а количество точек в E бесконечно, то какой-то шар содержит по крайней мере две точки множества E, т.е. существует такой  $B(\boldsymbol{a}_{i_0},\frac{1}{2})$ , что  $\boldsymbol{e}_{k_1},\boldsymbol{e}_{k_2}\in B(\boldsymbol{a}_{i_0},\frac{1}{2})$  для  $k_1< k_2$ . С одной стороны,

$$\|e_{k_1} - e_{k_2}\|_{\infty} = \|\underbrace{(0, \dots, 0, 1, 0, \dots)}_{k_1} - \underbrace{(0, \dots, 0, 1, 0, \dots)}_{k_2} + \underbrace{(0, \dots, 0, 1, 0, \dots)}_{k_2} - \underbrace{(0, \dots, 0, 1, 0, \dots)}_{k_2} \|_{\infty} = 1.$$

С другой стороны,

$$\|e_{k_1} - e_{k_2}\|_{\infty} = \|(e_{k_1} - a_{i_0}) + (a_{i_0} - e_{k_2})\| \le$$

$$\le \|e_{k_1} - a_{i_0}\| + \|a_{i_0} - e_{k_2}\| < \frac{1}{2} + \frac{1}{2} = 1.$$

Таким образом получили противоречие, что 1 < 1, и, следовательно,  $B[{\bf 0};1]$  не является вполне ограниченным в  $\ell_{\infty}$ .

**Утверждение 1.7.23.** Пусть E — линейное нормированное пространство. Подмножество  $X \subset E$  является вполне ограниченным тогда и только тогда, когда  $\overline{X}$  — вполне ограничено.

 $\underline{\mathcal{A}}$  оказательство. Пусть X — вполне ограничено, и докажем, что  $\overline{X}$  также вполне ограничено.

Пусть  $\varepsilon > 0$  задано, и найдем конечную  $\varepsilon$ -сетку для  $\overline{X}$ . Так как X вполне ограничено, то оно имеет конечную  $\frac{\varepsilon}{2}$ -сетку  $A = \{a_1, \ldots, a_m\}$ .

Докажем, что множество A образует конечную  $\varepsilon$ -сетку для  $\overline{X}$ , т.е.  $\overline{X} \subset \bigcup_{k=1}^m B(\boldsymbol{a}_k; \varepsilon)$ .

Так как  $B(\boldsymbol{a}_k;\frac{\varepsilon}{2}) \subset B[\boldsymbol{a}_k;\frac{\varepsilon}{2}]$ , то

$$X \subset \bigcup_{k=1}^m B(\boldsymbol{a}_k; \frac{\varepsilon}{2}) \subset \bigcup_{k=1}^m B[\boldsymbol{a}_k; \frac{\varepsilon}{2}],$$

а поскольку  $B[\boldsymbol{a}_k; \frac{\varepsilon}{2}]$  замкнуто, то, будучи конечным объединением,  $\cup_{k=1}^m B[\boldsymbol{a}_k; \frac{\varepsilon}{2}]$  также является замкнутым. А, поскольку  $\overline{X}$  — минимальное замкнутое множество, содержащее X (утверждение 1.5.4), то

$$\overline{X} \subset \bigcup_{k=1}^m B[\boldsymbol{a}_k; \frac{\varepsilon}{2}] \subset \bigcup_{k=1}^m B(\boldsymbol{a}_k; \varepsilon),$$

поскольку  $B[\mathbf{a}_k; \frac{\varepsilon}{2}] \subset B(\mathbf{a}_k; \varepsilon)$ . Таким образом, A является конечной  $\varepsilon$ -сеткой для  $\overline{X}$ .

Если предположить, что  $\overline{X}$  является вполне ограниченным, то, поскольку  $X\subset \overline{X},$  вполне ограниченность X следует из утверждения 1.7.19.

**Определение 1.7.24.** Пусть E — линейное нормированное пространство. Множество  $X \subset E$  называется *счетно компактным*, если всякое бесконечное подмножество  $\tilde{X} \subset X$  имеет в X предельную точку.

Пример 1.7.25. 1. Множество [0,1] ⊂  $\mathbb{R}$  является счетно компактным.

- 2. Множество (0,1] не является счетно компактным, поскольку  $\tilde{X}=\{\frac{1}{n}:n\in\mathbb{N}\}$  не имеет в (0,1] предельной точки.
- 3. Множество  $\mathbb{N} \subset \mathbb{R}$  не является счетно компактным, поскольку не имеет предельных точек в  $\mathbb{R}$ . Поэтому любое его подмножество  $\tilde{X}$  также не будет иметь предельных точек в  $\mathbb{R}$ , а тем более в  $\mathbb{N}$ .

**Утверждение 1.7.26.** Пусть  $X \subset E$  является счетно компактным. Тогда X замкнуто.

Доказательство. Если X не является замкнутым, то существует  $\boldsymbol{x}_* \in X' \setminus X$ , и, следовательно, существует последовательность  $(\boldsymbol{x}_n)_{n=1}^{\infty}$  в X, для которой имеем, что  $\lim_{n\to\infty} \boldsymbol{x}_n = \boldsymbol{x}_*$ . Рассмотрим множество

$$\tilde{X} = \{ \boldsymbol{x}_n : n \in \mathbb{N} \}.$$

Поскольку последовательность  $(x_n)$  является сходящейся в E, то множество  $\tilde{X}$  имеет единственную предельную точку в E, и это ее предел  $x_* \notin X$ . Т.е. в X множество  $\tilde{X}$  предельных точек не имеет, что противоречит счетной компактности X.

**Теорема 1.7.27.** Пусть E — банахово пространство,  $u X \subset E$ . Следующие условия эквивалентны.

- (i) Множество X является компактным.
- (ii) Множество X является счетно компактным.
- (iii) Множество X замкнуто и вполне ограничено.

Замечание 1.7.28. Эквивалентность (i) и (iii) называется критерием Фреше-Хаусдорфа.

Доказательство. Доказательство теоремы проведем по циклу.

(i)  $\Rightarrow$  (ii) Пусть X является компактным, и подмножество  $\tilde{X}$  множества X является бесконечным.

Покажем от противного, что  $\tilde{X}$  имеет предельные точки в E. Предположим, что  $\tilde{X}$  не имеет предельных точек в E, т.е.  $\tilde{X}'=\emptyset$ . Это означает, что  $\tilde{X}$  замкнуто. Для каждого  $\tilde{x}\in \tilde{X}$  множество  $F_{\tilde{x}}=\tilde{X}\setminus\{\tilde{x}\}$  также является замкнутым. Кроме того, в силу бесконечности  $\tilde{X}$ , имеем, что множества  $F_{\tilde{x}}$  являются бесконечными, и, поэтому, для любого конечного  $\tilde{X}_0\subset \tilde{X}$ 

$$\left(\bigcap_{\tilde{\boldsymbol{x}}\in\tilde{X}_0}F_{\tilde{\boldsymbol{x}}}\right)\cap X=\bigcap_{\tilde{\boldsymbol{x}}\in\tilde{X}_0}F_{\tilde{\boldsymbol{x}}}\neq\emptyset.$$

Это означает, что семейство  $\{F_{\tilde{x}}\}_{\tilde{x}\in \tilde{X}}$  является центрированным, и, в то же самое время,

$$\bigcap_{\tilde{\boldsymbol{x}}\in\tilde{X}}F_{\tilde{\boldsymbol{x}}}=\emptyset.$$

Это противоречит компактности X.

Следовательно  $\tilde{X}$  имеет предельную точку  $\boldsymbol{x}_*$  в E. Но, в силу замкнутости X (утверждение 1.7.10), эта предельная точка должна принадлежать X. Таким образом,  $\tilde{X}$  имеет предельные точки в X.

(ii)  $\Rightarrow$  (iii) Пусть X является счетно компактным. В силу утверждения 1.7.26, X является замкнутым. Предположим, что X не является вполне ограниченным, и придем к противоречию.

Поскольку условием вполне ограниченности является следующее условие:

$$\forall \varepsilon > 0 \quad \exists n \in \mathbb{N} \quad \exists \mathbf{a}_1, \dots, \mathbf{a}_n \in E : \qquad X \subset \bigcup_{k=1}^n B(\mathbf{a}_k; \varepsilon),$$

то условием того, что X не является вполне ограниченным будет следующее:

рудет следующее: 
$$\exists \, \varepsilon > 0 \quad \forall \, n \in \mathbb{N} \quad \forall \, \boldsymbol{a}_1, \dots, \boldsymbol{a}_n \in E : \qquad X \setminus \bigcup_{k=1}^n B(\boldsymbol{a}_k; \varepsilon) \neq \emptyset.$$

Используя это  $\varepsilon$ , построим бесконечное подмножество  $\tilde{X} \subset X$ , которое не будет иметь предельных точек.

Возьмем произвольное  $\tilde{x}_1 \in X$ . Из условия (1.34) следует, что существует

$$\tilde{\boldsymbol{x}}_2 \in X \setminus B(\tilde{\boldsymbol{x}}_1; \varepsilon).$$

Заметим, что  $\|\tilde{x}_1 - \tilde{x}_2\| \ge \varepsilon$ . Продолжая по индукции, берем произвольные точки

$$\tilde{\boldsymbol{x}}_{n+1} \in X \setminus \bigcup_{k=1}^{n} B(\tilde{\boldsymbol{x}}_n; \varepsilon), \qquad n \in \mathbb{N},$$

что можно сделать в силу условия (1.34). При этом для  $n_1 < n_2$  имеем, что

$$\|\tilde{\boldsymbol{x}}_{n_1} - \tilde{\boldsymbol{x}}_{n_2}\| \ge \varepsilon,\tag{1.35}$$

поскольку  $\tilde{\boldsymbol{x}}_{n_2} \notin B(\tilde{\boldsymbol{x}}_{n_1}; \varepsilon)$  по построению. Полагая

$$\tilde{X} = {\{\tilde{x}_n : n \in \mathbb{N}\}}$$

имеем, что подмножество  $\tilde{X}$  множества X бесконечно, но не имеет предельных точек в силу условия (1.35). Это противоречит счетной компактности X.

(iii)  $\Rightarrow$  (i) Предположим теперь, что X вполне ограниченное и замкнутое множество, и докажем, что произвольное центрированное в X семейство  $\mathcal{F} = \{F_\gamma\}_{\gamma \in \Gamma}$  замкнутых множеств имеет непустое пересечение в X. (Идея доказательства та же, что и доказательства теоремы 1.7.12).

#### 1.7. КОМПАКТНЫЕ МНОЖЕСТВА

Возьмем произвольную конечную  $\frac{1}{2}$ -сетку  $\{a_k^1\}_{k=1}^{m_1}$  для множества X. Тогда

$$X \subset \bigcup_{k=1}^{m_1} B(\boldsymbol{a}_k^1; \frac{1}{2}),$$

и, следовательно,

$$X = \bigcup_{k=1}^{m_1} X_k^1,$$

где  $X_k^1 = X \cap B(a_k^1; \frac{1}{2})$ . Поскольку семейство  $\mathcal{F}$  центрировано на X, то оно центрировано на некотором  $X_{k_1}^1$ . Положим  $X^1 = X_{k_1}^1$  и  $a^1 = a_{k_1}^1$ .

Поскольку множество  $X^1\subset X$ , то оно также вполне ограничено (утверждение 1.7.19). Поэтому существует конечная  $\frac{1}{2^2}$ -сетка  $\{a_k^2\}_{k=1}^{m_2}$  для  $X^1$ . Следовательно,

$$X^1 \subset \bigcup_{k=1}^{m_2} B(\boldsymbol{a}_k^2; \frac{1}{2^2}),$$

и, значит,

$$X^1 = \bigcup_{k=1}^{m_2} X_k^2,$$

где  $X_k^2=X^1\cap B(\boldsymbol{a}_k^2;\frac{1}{2^2})$ . Поскольку семейство  $\mathcal F$  центрировано на  $X^1$  по построению, то существует  $k_2$ , для которого семейство  $\mathcal F$  будет центрировано на  $X_{k_2}^2$ . Обозначим  $X^2=X_{k_2}^2$ , и  $\boldsymbol{a}^2=\boldsymbol{a}_{k_2}^2$ . Заметим, что, поскольку

$$B(a^1; \frac{1}{2}) \supset X \cap B(a^1; \frac{1}{2}) = X^1 \supset X^1 \cap B(a^2; \frac{1}{2^2}) = X^2,$$

то  $B(\boldsymbol{a}^1; \frac{1}{2}) \cap B(\boldsymbol{a}^2; \frac{1}{2^2}) \neq \emptyset$ . Следовательно,

$$\|\boldsymbol{a}^1 - \boldsymbol{a}^2\| < \frac{1}{2} + \frac{1}{2^2} < \frac{1}{2} + \frac{1}{2} = 1.$$

Поскольку  $X^2 \subset X$  вполне ограничено, то для него существует конечная  $\frac{1}{2^3}$ -сетка  $\{a_k^3\}_{k=1}^{m_3}$ ,

$$X^2 \subset \bigcup_{k=1}^{m_3} B(\boldsymbol{a}_k^3; \frac{1}{2^3}).$$

Используя представление

$$X^2 = \bigcup_{k=1}^{m_3} X_k^3,$$

где  $X_k^3=X^2\cap B(\boldsymbol{a}_k^3;\frac{1}{2^3})$ , выбираем  $X_{k_3}^3$ , на котором семейство  $\mathcal F$  является центрированным. Обозначим  $X^3=X_{k_3}^3,\, \boldsymbol{a}^3=\boldsymbol{a}_{k_3}^3.$  Имеем,

$$B(a^2; \frac{1}{2^2}) \supset X^2 \supset X^2 \cap B(a^3; \frac{1}{2^3}) = X^3.$$

Следовательно,  $B(\boldsymbol{a}^2;\frac{1}{2^2})\cap B(\boldsymbol{a}^3;\frac{1}{2^3})\neq\emptyset$ , и, следовательно,

$$\|\boldsymbol{a}^2 - \boldsymbol{a}^3\| \le \frac{1}{2^2} + \frac{1}{2^3} < \frac{1}{2^2} + \frac{1}{2^2} = \frac{1}{2}.$$

Продолжая таким образом, получим последовательность множеств  $X^n$  и точек  $\boldsymbol{a}^n$ , причем

$$\|\boldsymbol{a}^n - \boldsymbol{a}^{n+1}\| < \frac{1}{2^{n-1}}.$$

Последовательность точек  $(a^n)_{n\in\mathbb{N}}$  является фундаментальной, поскольку для  $p\in\mathbb{Z}_+$  имеем

$$\begin{aligned} \|\boldsymbol{a}^{n} - \boldsymbol{a}^{n+p}\| &= \\ &= \|\boldsymbol{a}^{n} - \boldsymbol{a}^{n+1} + \boldsymbol{a}^{n+1} - a^{n+2} + \dots + \boldsymbol{a}^{n+p-1} - \boldsymbol{a}^{n+p}\| \le \\ &\le \|\boldsymbol{a}^{n} - \boldsymbol{a}^{n+1}\| + \dots + \|\boldsymbol{a}^{n+p-1} - \boldsymbol{a}^{n+p}\| < \\ &< \frac{1}{2^{n-1}} + \dots + \frac{1}{2^{n+p-2}} = \frac{1}{2^{n-1}} \left( 1 + \frac{1}{2} + \dots + \frac{1}{2^{p-1}} \right) = \\ &= \frac{1}{2^{n-1}} \frac{1 - \frac{1}{2^{p}}}{1 - \frac{1}{2}} < \frac{1}{2^{n-2}}. \end{aligned}$$

Поскольку E банахово, то последовательность  $(\boldsymbol{a}^n)_{n\in\mathbb{N}}$  является сходящейся, т.е. существует  $\boldsymbol{a}^*=\lim_{n\to\infty}\boldsymbol{a}^n\in E$ , причем для любого  $n\in\mathbb{N}$ 

$$\|\boldsymbol{a}^n - \boldsymbol{a}^*\| = \lim_{p \to \infty} \|\boldsymbol{a}^n - \boldsymbol{a}^{n+p}\| \le \frac{1}{2^{n-2}}.$$
 (1.36)

Докажем, что  $\mathbf{a}^* \in X$  и  $\mathbf{a}^* \in F_{\gamma}$  для каждого  $\gamma \in \Gamma$ . Поскольку множества X и  $F_{\gamma}$  замкнуты, то достаточно доказать, что  $\mathbf{a}^*$  является предельной точкой X и  $F_{\gamma}$ .

Поэтому для произвольного  $\varepsilon > 0$  рассмотрим  $B(\boldsymbol{a}^*; \varepsilon)$ . Выберем  $n \in \mathbb{N}$ , для которого  $\frac{1}{2^{n-2}} < \frac{\varepsilon}{2}$ . Тогда, для  $\boldsymbol{x} \in B(\boldsymbol{a}^n; \frac{1}{2^n})$ , используя (1.36), имеем

$$\|oldsymbol{x}-oldsymbol{a}^*\| \leq \|oldsymbol{x}-oldsymbol{a}^n\| + \|oldsymbol{a}^n-oldsymbol{a}^*\| < rac{1}{2^n} + rac{1}{2^{n-2}} < rac{arepsilon}{2} + rac{arepsilon}{2} = arepsilon,$$

т.е.  $x \in B(a^*; \varepsilon)$ , и, следовательно,  $B(a^n; \frac{1}{2^n}) \subset B(a^*; \varepsilon)$ . Но по построению

$$X^n \subset B(\boldsymbol{a}^n; \frac{1}{2^n}).$$

Таким образом,  $X^n\subset B(\pmb{a}^*;\varepsilon)$ , и, так как  $X^n\subset X$  и  $X^n\cap F_\gamma\neq\emptyset$ , имеем, что

$$B(\boldsymbol{a}^*;\varepsilon) \cap X \neq \emptyset, \qquad B(\boldsymbol{a}^*;\varepsilon) \cap F_{\gamma} \neq \emptyset,$$

что и оканчивает доказательство.

**Теорема 1.7.29.** Пусть E — банахово пространство,  $u X \subset E$ . Следующие условия эквивалентны.

- (i) Множество X является предкомпактным.
- (ii) Множество X вполне ограничено.

- Доказательство. (i)  $\Rightarrow$  (ii) Если X предкомпактно, то это означает, что множество  $\overline{X}$  является компактным. Следовательно, по теореме 1.7.27 оно является вполне ограниченным. А это означает, что и X также будет вполне ограниченным (утверждение 1.7.23).
- (ii)  $\Rightarrow$  (i) Если X вполне ограничено, то и  $\overline{X}$  также будет вполне ограниченным (утверждение 1.7.23). А, поскольку  $\overline{X}$  также замкнуто, то по теореме 1.7.27, множество  $\overline{X}$  является компактным, что по определению означает, что X предкомпактно.

# **1.7.2** Компактные подмножества C([a,b])

Определение 1.7.30. Семейство функций  $\Phi = \{f_{\gamma}\}_{{\gamma} \in \Gamma} \subset \mathcal{C}([a,b])$  называется равномерно ограниченным, если существует такое  $C \in \mathbb{R}_+$ , что  $\|f_{\gamma}\|_{\infty} \leq C$  для всех  $\gamma \in \Gamma$ .

Замечание 1.7.31. Равномерная ограниченность множества функций  $\Phi = \{f_\gamma\}_{\gamma \in \Gamma}$  эквивалентна тому, что множество  $\Phi$  ограниченно в банаховом пространстве  $\mathcal{C}([a,b])$ .

2. Семейство  $\{\gamma x: \gamma \in \mathbb{R}_+\}, x \in [0,1]$ , не является равномерно ограниченным.

Определение 1.7.33. Семейство функций  $\Phi = \{f_{\gamma}\}_{\gamma \in \Gamma} \subset \mathcal{C}([a,b])$  называется равноственно непрерывным, если для каждого  $\varepsilon > 0$  существует такое  $\delta > 0$ , что для всех  $t', t'' \in [a,b]$  и всех  $\gamma \in \Gamma$  выполняется условие

$$|t' - t''| < \delta \implies |f_{\gamma}(t') - f_{\gamma}(t'')| < \varepsilon.$$
 (1.37)

 $\Box$ 

Пример 1.7.34. 1. Семейство функций  $f_{\gamma}(t) = \sin(t + \gamma), \ \gamma \in \mathbb{R},$   $t \in [0,1]$  является равностепенно непрерывным, поскольку

$$|f_{\gamma}(t') - f_{\gamma}(t'')| = |\sin(t' + \gamma) - \sin(t'' + \gamma)| =$$

$$= 2|\sin\frac{t' - t''}{2}\cos\frac{t' + t'' + 2\gamma}{2}| =$$

$$= 2|\sin\frac{t' - t''}{2}| |\cos\frac{t' + t'' + 2\gamma}{2}| \le$$

$$\le 2|\frac{t' - t''}{2}| = |t' - t''|.$$

2. Семейство  $f_{\gamma} = \gamma t, \ \gamma \in \mathbb{R}_+$ , не является равностепенно непрерывным на [0,1], поскольку

$$|f_{\gamma}(t') - f_{\gamma}(t'')| = |\gamma t' - \gamma t''| = \gamma |t' - t''|,$$

и очевидно, что условие (1.37) не может иметь место для  $\varepsilon = 1$ , произвольном фиксированном  $\delta > 0$ ,  $t' \neq t''$  и всех  $\gamma \in \mathbb{R}_+$ .

**Теорема 1.7.35** (Арцела). Семейство  $\Phi = \{f_\gamma\}_{\gamma \in \Gamma} \subset \mathcal{C}([a,b])$  является предкомпактным подмножеством  $\mathcal{C}([a,b])$  тогда и только тогда, когда оно равномерно ограниченно и равностепенно непрерывно.

Доказательство. Предположим, что семейство  $\Phi$  предкомпактно в  $\mathcal{C}([a,b]),$  и докажем, что оно равномерно ограничено и равностепенно непрерывно.

Предкомпактность  $\Phi$  означает, что это множество вполне ограничено (теорема 1.7.29). Отсюда следует, что оно ограничено как подмножество в банаховом пространстве  $\mathcal{C}([a,b])$  (утверждение 1.7.20), что означает его равномерную ограниченность (определение 1.7.17).

Докажем теперь равностепенную непрерывность  $\Phi$ . Для заданного  $\varepsilon>0$ , используя снова вполне ограниченность множества  $\Phi$ , имеем, что

$$\Phi \subset \bigcup_{k=1}^m B(f_k; \frac{\varepsilon}{3})$$

для некоторого конечного множества  $\{f_k\}_{k=1}^m$  непрерывных функций. Отсюда следует, что для произвольной функции  $f_0 \in \Phi$  существует такое  $k_0$ , что  $f_0 \in B(f_k; \frac{\varepsilon}{3})$ , что означает, что

$$||f_0 - f_{k_0}|| = \sup_{x \in [a,b]} |f_0(x) - f_{k_0}(x)| < \frac{\varepsilon}{3}$$
 (1.38)

Рассмотрим функцию  $f_k$ ,  $k=1,\ldots,m$ . Эта функция непрерывна, а множество [a,b] является компактным. Поэтому функция  $f_k$  является равномерно непрерывна на [a,b] (теорема II.12.2.5), что означает, что существует такое  $\delta_k>0$ , что

$$|x - y| < \delta_k \qquad \Longrightarrow \qquad |f_k(x) - f_k(y)| < \frac{\varepsilon}{3}$$
 (1.39)

для всех  $x, y \in [a, b]$ . Положим теперь

$$\delta = \min_{k=1,\dots,m} \delta_k > 0. \tag{1.40}$$

Тогда (1.39) будет иметь место для всех  $k=1,\ldots,m$  и всех  $x,y\in[a,b],$  если  $|x-y|<\delta.$ 

Теперь, если  $f_0 \in \Phi$  произвольна и  $f_0 \in B(f_{k_0}; \frac{\varepsilon}{3})$ , а  $|x-y| < \delta$ , то

$$|f_{0}(x) - f_{0}(y)| = |(f_{0}(x) - f_{k_{0}}(x)) + (f_{k_{0}}(x) - f_{k_{0}}(y)) + + (f_{k_{0}}(y) - f_{0}(y))| \le \le |f_{0}(x) - f_{k_{0}}(x)| + |f_{k_{0}}(x) - f_{k_{0}}(y)| + + |f_{k_{0}}(y) - f_{0}(y)| \le \le ||f_{0} - f_{k_{0}}|| + |f_{k_{0}}(x) - f_{k_{0}}(y)| + ||f_{k_{0}} - f_{0}|| < < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

где для оценки первого и третьего слагаемых использовалась оценка (1.38), а для второго слагаемого — оценка (1.39). Это оканчивает доказательство равностепенной непрерывности множества  $\Phi$ .

Обратно, предположим, что семейство  $\Phi$  равномерно ограничено и равностепенно непрерывно, и докажем, что оно вполне ограничено в банаховом пространстве  $\mathcal{C}([a,b])$ , а, значит, и предкомпактно (теорема 1.7.29).

Пусть  $\varepsilon > 0$  задано, и найдем конечную  $\varepsilon$ -сетку для  $\Phi$ .

Поскольку  $\Phi$  равномерно ограничено, то существует такое C>0, что

для всех  $f \in \Phi$  и  $x \in [a, b]$ . Это означает, что график  $\Gamma_f$  произвольной функции  $f \in \Phi$  лежит в прямоугольнике  $\Pi$ , см. рис. 1.17 (a).

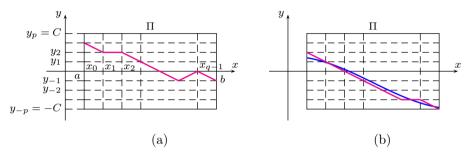


Рис. 1.17: Построение  $\varepsilon$ -сетки: (a) график типичной функции  $f_{\gamma}$ ,  $\gamma \in \Gamma$ ; (b)  $\varepsilon$ -аппроксимация функции  $f_0$  (голубой) функцией  $f_{\gamma_0}$  (красный).

Разделим прямоугольник П горизонтальными прямыми  $y=y_k,$   $k=-p,\ldots,p,$  так, чтобы  $y_k-y_{k-1}=\varepsilon$  для всех k, и вертикальными прямыми  $x=x_l,\ l=0,\ldots,q,$  так, чтобы  $0< x_l-x_{l-1}<\delta$  для всех l, где  $\delta$  найдено по заданному  $\varepsilon$  из условия равностепенной непрерывности множества  $\Phi$  так, чтобы

$$|x' - x''| < \delta \qquad \Longrightarrow \qquad |f(x') - f(x'')| < \frac{\varepsilon}{2}$$
 (1.41)

для произвольной функции  $f \in \Phi$ .

Пусть  $L = \{f_\gamma\}_{\gamma \in \Gamma}$  — множество всех непрерывных кусочно линейных функций, определенных на [a,b], графики которых проходят через узлы полученной сетки  $x=x_l,\ l=0,\ldots,q,$  и  $y=y_k,$   $k=-p,\ldots,p,$  см. рис. 1.17 (a). Количество элементов в L конечно. Докажем, что L является  $\varepsilon$ -сеткой.

При заданном  $f_0$  для построения функции  $f_{\gamma_0}$ , для которой  $||f_0 - f_{\gamma_0}|| < \varepsilon$ , т.е.  $f_0 \in B(f_{\gamma_0}; \varepsilon)$ , заметим следующее.

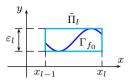


Рис. 1.18: Прямоугольник  $\tilde{\Pi}_l$ , содержащий график функции  $f_0$ ,  $x_{l-1} \leq x \leq x_l$ .

Поскольку  $f_0$  удовлетворяет условию равномерной непрерывности (1.41), то на каждом отрезке  $[x_{l-1},x_l]$  график  $\Gamma_{f_0}$  функции  $f_0$  содержится в прямоугольнике  $\tilde{\Pi}_l$  со стороной длины  $x_l-x_{l-1}$  и высотой  $\varepsilon_l$ , причем  $\varepsilon_l \leq \frac{\varepsilon}{2}$ , см. рис. 1.18. Теперь значения  $f_{\gamma_0}(x_l)$  строятся индуктивно по уже построенным значениям  $f_{\gamma_0}(x_{l-1})$ .

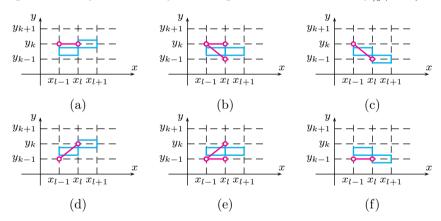


Рис. 1.19: Варианты построения  $f_{\gamma_0}(x_l)$  и функции  $f_{\gamma_0}(x)$ ,  $x \in [x_{l-1}, x_l]$ , при уже построенном  $f_{\gamma_0}(x_{l-1})$  в случае  $\tilde{\Pi}_l \subset \Pi_{lk}$ .

Значение  $f_{\gamma_0}(x_l)$  строится в зависимости от того содержится ли прямоугольник  $\tilde{\Pi}_l$  в каком-нибудь  $\Pi_{lk}$  или нет, взаимному расположению прямоугольников  $\tilde{\Pi}_l$  и  $\tilde{\Pi}_{l+1}$ , а также от того, где по отношению к прямоугольнику  $\tilde{\Pi}_l$  находится построенное значение  $f_{\gamma_0}(x_{l-1})$ . Все варианты приведены на рис. 1.19 и 1.20. Значения  $f_{\gamma_0}(x_0)$  и  $f_{\gamma_0}(x_q)$  выбираются произвольным образом согласно

рис. 1.19 или 1.20.

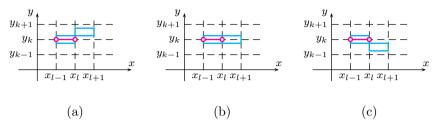


Рис. 1.20: Варианты построения  $f_{\gamma_0}(x_l)$  при построенном  $f_{\gamma_0}(x_{l-1})$  в случае  $\tilde{\Pi}_l \not\subset \Pi_{lk}$ .

Вертикальное расстояние между точкой на графике функции  $f_{\gamma_0}$  при  $x \in [x_{l-1}, x_l]$  и произвольной точкой прямоугольника, содержащего график функции  $f_0$ , а значит и точкой на графике  $f_0$ , по построению будет меньше, чем  $\varepsilon$ .

# 1.7.3 Приложение: теорема Пеано

**Определение 1.7.36.** Пусть D — область в  $\mathbb{R}^2$ ,  $f \colon D \to \mathbb{R}$  и  $(x_0, y_0) \in D$ . Система

$$\begin{cases} \frac{dy}{dx} = f(x,y), \\ y(x_0) = y_0 \end{cases}$$
 (1.42)

называется задачей Коши для дифференциального уравнения первого порядка. Условие  $y(x_0) = y_0$  называется начальным условием.

**Определение 1.7.37.** Пусть  $I = [x_0 - h, x_0 + h], h > 0$ . Функция  $\varphi \colon I \to \mathbb{R}$  называется *решением* задачи Коши (1.53) на отрезке I, если:

- (a) функция  $\varphi$  является непрерывно дифференцируемой на I;
- (b) график  $\Gamma_{\varphi}$  функции  $\varphi$  лежит в D и содержит точку  $(x_0, y_0)$ ;
- (c) для всех  $x \in I$  имеет место равенство

$$\varphi'(x) = f(x, \varphi(x)).$$

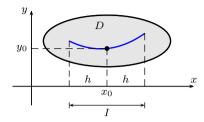


Рис. 1.21: Существование решения задачи Коши.

**Теорема 1.7.38** (Пеано). Пусть  $D \subset \mathbb{R}^2$  — замкнутая ограниченная область,  $(x_0, y_0)$  — внутренняя точка D, u функция  $f: D \to \mathbb{R}$  непрерывна на D. Тогда существует такое h > 0, что задача Коши (1.53) имеет решение  $\varphi$  на  $I = [x_0 - h, x_0 + h]$  (см. рис 1.21).

Замечание 1.7.39. Решение задачи Коши, существование которого гарантируется теоремой 1.7.38, не обязательно единственно.

Пример 1.7.40. Рассмотрим задачу Коши

$$y' = \frac{3}{2}y^{1/3}, \qquad y(0) = 0$$
 (1.43)

на  $D = \mathbb{R}^2$ .

Непосредственно проверяется, что три функции  $\varphi_0, \ \varphi_-$  и  $\varphi_+,$  заданные на I=[-1,1] как

$$\varphi_0(x) = 0, \qquad \varphi_{\pm}(x) = \begin{cases} 0, & -1 \le x \le 0, \\ \pm x^{3/2}, & 0 < x \le 1, \end{cases}$$

являются решением задачи Коши (1.43) (см. рис 1.22).

Проверим, например, что функция  $\varphi_-$  является решением задачи Коши (1.43). Очевидно, что она удовлетворяет начальному условию. Докажем, что она является решением дифференциального уравнения.

Поскольку  $\varphi_-(x)=0$  при x<0, то  $\varphi'_-(x)=0=\frac{3}{2}(\varphi_-(x))^{1/3},$  x<0.

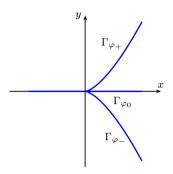


Рис. 1.22: Решения задачи Коши (1.43).

Если 
$$x > 0$$
, то  $\varphi_{-}(x) = -x^{3/2}$  и

$$\varphi_-'(x) = -\frac{3}{2}x^{1/2} = \frac{3}{2} \left(-x^{3/2}\right)^{1/3} = \frac{3}{2} (\varphi_-(x))^{1/3}$$

Для x = 0 вычисляем левую и правую производные:

$$(\varphi_{-})'_{-}(0) = \lim_{x \to 0-0} \frac{\varphi_{-}(x) - \varphi_{-}(0)}{x - 0} = \lim_{x \to 0-0} \frac{0 - 0}{x} = 0,$$

$$(\varphi_{-})'_{+}(0) = \lim_{x \to 0+0} \frac{\varphi_{-}(x) - \varphi_{-}(0)}{x - 0} = \lim_{x \to 0+0} \frac{-x^{3/2} - 0}{x} = 0,$$

т.е. производная

$$\varphi'_{-}(0) = \lim_{x \to 0} \frac{\varphi(x) - \varphi(0)}{x - 0}$$

существует и равна 0. Таким образом,  $\varphi_-$  удовлетворяет уравнению в (1.43) на I и, следовательно, является решением задачи Коши.

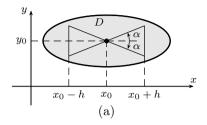
Идея доказательства теоремы 1.7.38. Поскольку D является замкнутым и ограниченным множество, а функция f непрерывна на D, то она ограничена на D, т.е. существует  $M \in \mathbb{R}$  такое, что

$$|f(x,y)| \leq M$$

для всех  $(x,y) \in D$ .

Через внутреннюю точку  $(x_0, y_0)$  проведем прямые под углами  $\pm \alpha$ , где  $\operatorname{tg} \alpha = M$ , и выберем h > 0 таким образом, чтобы вертикальные прямые  $x = x_0 \pm h$  образовывали с уже проведенными прямыми треугольники, полностью лежащие в D (рис. 1.23 (a)).

#### 1.7. КОМПАКТНЫЕ МНОЖЕСТВА



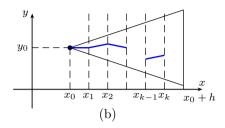


Рис. 1.23: Построение решения задачи Коши.

Для каждого  $n \in \mathbb{N}$  строим кусочно линейную функцию  $\varphi_n$  на  $I = [x_0 - h, x_0 + h]$ . Построения на  $[x_0, x_0 + h]$  проводятся следующим образом (на  $[x_0 - h, x_0]$  построения аналогичны).

Делим отрезок  $[x_0, x_0 + h]$  на равные отрезки длиной  $\frac{h}{n}$  точками  $x_k = x_0 + k \frac{h}{n}, \ k = 0, \dots, n$ , см. рис. 1.23 (b).

На  $[x_0, x_1]$  определим  $\varphi_n$  как функцию, график которой является отрезком прямой, проходящей через точку  $(x_0, y_0)$  с угловым коэффициентом  $k_0 = f(x_0, y_0)$ , т.е.

$$\varphi_n(x) = y_0 + f(x_0, y_0)(x - x_0), \qquad x \in [x_0, x_1].$$

Далее положим  $y_1 = \varphi_n(x_1)$  и продолжим функцию  $\varphi_n$  на отрезок  $[x_1, x_2]$  так, чтобы её график совпадал с отрезком, проходящим через точку  $(x_1, y_1)$  и лежащим на прямой с угловым коэффициентом  $k_1 = f(x_1, y_1)$ , т.е.

$$\varphi_n(x) = y_1 + f(x_1, y_1)(x - x_1), \quad x \in [x_1, x_2].$$

Продолжая эту процедуру, получим функцию  $\varphi_n$ , определенную на всем отрезке  $[x_0, x_0 + h]$ . При этом,

$$\varphi_n(x) = y_0 + \sum_{k=0}^{m-1} f(x_k, y_k)(x_{k+1} - x_k) + f(x_m, y_m)(x - x_m),$$

$$x \in [x_m, x_{m+1}]. \quad (1.44)$$

#### 1.7. КОМПАКТНЫЕ МНОЖЕСТВА

Рассмотрим множество функций  $\Phi = \{\varphi_n : n \in \mathbb{N}\}$  и докажем следующее.

- (i) Для произвольного  $n \in \mathbb{N}$  график  $\Gamma_{\varphi_n}$  функции  $\varphi_n$  принадлежит D, точнее, правому замкнутому треугольнику (см. рис. 1.23 (a)), и, следовательно, множество  $\Phi$  ограничено в  $\mathcal{C}([x_0, x_0 + h])$ .
- (ii) Семейство Ф является равностепенно непрерывным.
- (i) Достаточно доказать, что

$$|\varphi_n(x) - y_0| \le M(x - x_0), \quad x \in [x_0, x_0 + h].$$

Для  $x \in [x_m, x_{m+1}]$ , используя (1.44) и то, что  $|f(x_k, y_k)| \le M$  для всех k по определению M, имеем

$$|\varphi_{n}(x) - y_{0}| = \left| \sum_{k=0}^{m-1} f(x_{k}, y_{k})(x_{k+1} - x_{k}) + f(x_{m}, y_{m})(x - x_{m}) \right| \le$$

$$\le \sum_{k=0}^{m-1} |f(x_{k}, y_{k})| |x_{k+1} - x_{k}| + |f(x_{m}, y_{m})| |x - x_{m}| \le$$

$$\le \sum_{k=0}^{m-1} M(x_{k+1} - x_{k}) + M(x - x_{m}) =$$

$$= M\left(\sum_{k=0}^{m-1} x_{k+1} - \sum_{k=0}^{m-1} x_{k} - x_{m} + x\right) =$$

$$= M\left(\sum_{k=1}^{m} x_{k} - \sum_{k=0}^{m-1} x_{k} - x_{m} + x\right) =$$

$$= M(x - x_{0}).$$

(ii) Докажем теперь равностепенную непрерывность семейства  $\Phi$ . Пусть  $\varepsilon>0$  задано, и найдем такое  $\delta>0$ , что

$$|x' - x''| < \delta \implies |\varphi_n(x') - \varphi_n(x'')| < \varepsilon$$
 (1.45)

для всех  $x', x'' \in [x_0, x_0 + h]$  и  $n \in \mathbb{N}$ . Пусть  $x' \in [x_{m_1}, x_{m_1+1}]$ , а  $x'' \in [x_{m_2}, x_{m_2+1}]$ , и  $m_1 \leq m_2$ . Рассмотрим

$$|\varphi_{n}(x') - \varphi_{n}(x'')| = \left| \sum_{k=0}^{m_{1}-1} f(x_{k}, y_{k})(x_{k+1} - x_{k}) + f(x_{m_{1}}, y_{m_{1}})(x' - x_{m_{1}}) - \sum_{k=0}^{m_{2}-1} f(x_{k}, y_{k})(x_{k+1} - x_{k}) - f(x_{m_{2}}, y_{m_{2}})(x'' - x_{m_{2}}) \right| =$$

$$= \left| f(x_{m_{1}}, y_{m_{1}})(x' - x_{m_{1}}) - \sum_{k=m_{1}}^{m_{2}-1} f(x_{k}, y_{k})(x_{k+1} - x_{k}) - f(x_{m_{2}}, y_{m_{2}})(x'' - x_{m_{2}}) \right| =$$

$$= \left| f(x_{m_{1}}, y_{m_{1}})(x' - x_{m_{1}}) - f(x_{m_{1}}, y_{m_{1}})(x_{m_{1}+1} - x_{m_{1}}) - \frac{x_{m_{2}-1}}{x_{m_{2}}} f(x_{k}, y_{k})(x_{k+1} - x_{k}) - f(x_{m_{2}}, y_{m_{2}})(x'' - x_{m_{2}}) \right| =$$

$$= \left| -f(x_{m_{1}}, y_{m_{1}})(x_{m_{1}+1} - x') - \frac{x_{m_{2}-1}}{x_{m_{2}}} f(x_{k}, y_{k})(x_{k+1} - x_{k}) - \frac{x_{m_{2}-1}}{x_{m_{2}}} f(x_{k}, y_{k})(x_{k+1} - x_{k}) - \frac{x_{m_{2}-1}}{x_{m_{2}}} f(x_{k}, y_{k})(x_{k+1} - x_{k}) + \frac{x_{m_{2}-1}}{x_{m_{2}}} \left| f(x_{m_{1}}, y_{m_{1}})(x_{m_{1}+1} - x') + \frac{x_{m_{2}-1}}{x_{m_{2}}} \right| \leq$$

$$\leq \left| f(x_{m_{1}}, y_{m_{1}})(x'' - x_{m_{2}}) \right| \leq$$

$$\leq M(x_{m_{1}+1} - x') + \sum_{k=m_{1}+1}^{m_{2}-1} M(x_{k+1} - x_{k}) + M(x'' - x_{m_{2}}) =$$

$$= M(x'' - x').$$

#### 1.7. КОМПАКТНЫЕ МНОЖЕСТВА

Поэтому условие (1.45) выполнено для всех  $n \in \mathbb{N}$  и  $x', x'' \in [x_0, x_0 + h]$ , если  $\delta = \frac{\varepsilon}{M}$ .

Таким образом, семейство  $\Phi$  является равномерно ограниченным и равностепенно непрерывным подмножеством  $\mathcal{C}([x_0, x_0 + h])$ , а, значит, предкомпактным (теорема Арцела 1.7.35).

Пусть  $\varphi_*$  — предельная точка множества  $\overline{\Phi}$ . Тогда очевидно, что  $\Gamma_{\varphi_*} \subset D$  и содержит точку  $(x_0,y_0)$ , и можно доказать  $\overline{\phantom{a}}$ , что  $\varphi_*$  является непрерывно дифференцируемой на  $[x_0,x_0+h]$  и удовлетворяет дифференциальному уравнению в (1.53), т.е. является решением задачи Коши (1.53).

 $<sup>^{1}</sup>$ Петровский, И. Г. Лекции по теории обыкновенных дифференциальных уравнений. М.: Изд-во МГУ, 1984. — 296 с.

# 1.8 Непрерывные отображения

### 1.8.1 Общие положения

Определение 1.8.1. Пусть  $(E_1, \|\cdot\|_1)$  и  $(E_2, \|\cdot\|_2)$  — линейные нормированные пространства, и  $X \subset E_1$ . Отображение  $\varphi \colon X \to E_2$  называется непрерывным в точке  $x_* \in X$ , если для каждой окрестности  $U_2 \subset E_2$  точки  $\varphi(x_*)$  существует такая окрестность  $U_1 \subset E_1$  точки  $x_*$ , что  $\varphi(U_1 \cap X) \subset U_2$ .

**Определение 1.8.2.** Если  $E_2 = \mathbb{K}, \| \cdot \|_2 = | \cdot |$  и  $X \subset E$ , то отображение  $\varphi \colon X \to \mathbb{K}$  называется функционалом на E.

**Утверждение 1.8.3.** Пусть  $(E_1, \|\cdot\|_1)$ ,  $(E_2, \|\cdot\|_2)$  — линейные нормированные пространства,  $X \subset E_1$ ,  $\varphi \colon X \to E_2$ , и  $x_* \in X$  — предельная точка X. Следующие условия эквивалентны.

- (i) Отображение  $\varphi$  непрерывно в точке  $x_*$ .
- (ii) Для любого  $\varepsilon > 0$  существует такое  $\delta > 0$ , что для всех  ${m x} \in X$

$$\|\boldsymbol{x} - \boldsymbol{x}_*\|_1 < \delta \qquad \Longrightarrow \qquad \|\boldsymbol{\varphi}(\boldsymbol{x}) - \boldsymbol{\varphi}(\boldsymbol{x}_*)\|_2 < \varepsilon.$$
 (1.46)

(iii) Для любой последовательности  $(x_n)_{n=1}^{\infty}$  в X имеем:

$$x_n \to x_* \Longrightarrow \varphi(x_n) \to \varphi(x_*).$$
 (1.47)

Доказательство. Будем доказывать по циклу: (i)  $\Rightarrow$  (ii)  $\Rightarrow$  (iii)  $\Rightarrow$  (i).

(i)  $\Rightarrow$  (ii) Пусть  $\varepsilon > 0$  задано. Рассмотрим шар  $B(\varphi(x_*); \varepsilon)$ , который является окрестностью точки  $\varphi(x_*)$ . По условию существует окрестность  $U_1 \subset E_1$  точки  $x_*$ , для которой

$$\varphi(X \cap U_1) \subset B(\varphi(x_*); \varepsilon).$$

Поскольку  $U_1$  — окрестность точки  $x_*$ , что означает, что точка  $x_*$  является внутренней точкой  $U_1$ , то существует такое  $\delta > 0$ , что  $B(x_*; \delta) \subset U_1$ . Но тогда

$$\varphi(X \cap B(x_*; \delta)) \subset \varphi(X \cap U_1) \subset B(\varphi(x_*); \varepsilon),$$

что в точности означает выполнение условия в (ii).

(ii)  $\Rightarrow$  (iii) Пусть  $x_n \to x_*$  в X, и докажем, что  $\varphi(x_n) \to \varphi(x_*)$ . Пусть  $\varepsilon > 0$  и найдем  $N \in \mathbb{N}$ , для которого  $\varphi(x_n) \in B(\varphi(x_*); \varepsilon)$  для всех n > N. Используя условие (ii), найдем  $\delta > 0$ , для которого выполнено (1.46). Для найденного  $\delta > 0$  найдем такое  $N \in \mathbb{N}$ , что  $x_n \in B(x_*; \delta)$  при n > N. Но тогда из условия (1.46) будет следовать, что

$$\|\boldsymbol{\varphi}(\boldsymbol{x}_n) - \boldsymbol{\varphi}(\boldsymbol{x}_*)\|_2 < \varepsilon,$$

т.е.  $\varphi(\boldsymbol{x}_n) \in B(\varphi(\boldsymbol{x}_*); \varepsilon)$  при n > N.

(iii)  $\Rightarrow$  (i) Обозначим через  $\mathcal{N}(x_*)$  и  $\mathcal{N}(\varphi(x_*))$  системы окрестностей точек  $x_*$  и  $\varphi(x_*)$ , соответственно. Тогда условие непрерывности в определении 1.8.1 запишется как

$$\forall U_2 \in \mathcal{N}(\varphi(x_*)) \quad \exists U_1 \in \mathcal{N}(x_*) : \qquad \varphi(U_1 \cap X) \subset U_2.$$

Доказательство будем проводить от противного, т.е., предполагая, что

$$\exists U_2 \in \mathcal{N}(\varphi(x_*)) \quad \forall U_1 \in \mathcal{N}(x_*) : \qquad \varphi(U_1 \cap X) \setminus U_2 \neq \emptyset.$$

Для  $U_2$ , удовлетворяющему этому условию, можно найти такое  $\varepsilon > 0$ , что  $B(\varphi(x_*)); \varepsilon) \subset U_2$ . И взяв последовательность  $B(x_*; \frac{1}{n}), n \in \mathbb{N}$ , в качестве  $U_1$ , получим, что

$$\exists \varepsilon > 0 \quad \forall n \in \mathbb{N} : \qquad \varphi(B(\boldsymbol{x}_*; \frac{1}{n}) \cap X) \setminus B(\varphi(\boldsymbol{x}_*); \varepsilon) \neq \emptyset.$$

Поэтому для каждого  $n \in \mathbb{N}$  существует такая точка  $\boldsymbol{x}_n \in B(\boldsymbol{x}_*; \frac{1}{n}) \cap X$ , что  $\boldsymbol{\varphi}(\boldsymbol{x}_n) \notin B(\boldsymbol{\varphi}(\boldsymbol{x}_*); \varepsilon)$ . Но тогда приходим к противоречию, поскольку  $\boldsymbol{x}_n \in X$ ,  $\boldsymbol{x}_n \to \boldsymbol{x}_*$ , но  $\boldsymbol{\varphi}(\boldsymbol{x}_n) \not\to \boldsymbol{\varphi}(\boldsymbol{x}_*)$ .

Определение 1.8.4. Пусть  $(E_1, \|\cdot\|_1)$  и  $(E_2, \|\cdot\|_2)$  — линейные нормированные пространства,  $X \subset E_1$ . Отображение  $\varphi \colon X \to E_2$  называется непрерывным на X, если оно непрерывно в каждой точке X.

Пример 1.8.5. Пусть  $E_1 = E_2 = \mathbb{R}, \ \varphi \colon \mathbb{R} \to \mathbb{R}, \ \varphi(x) = x^2$ . Тогда функционал  $\varphi$  непрерывен на  $\mathbb{R}$ 

Пример 1.8.6. Пусть  $E_1 = E_2 = \mathcal{C}([a,b])$ , и  $F \in \mathcal{C}([a,b] \times [c,d])$ . Положим

$$X = \big\{ x \in \mathcal{C}([a,b]) : x(t) \in (c,d) \ \forall \, t \in [a,b] \big\},\$$

и докажем, что отображение  $\varphi \colon X \to \mathcal{C}([a,b]),$  заданное как

$$\varphi(x)(t) = \int_a^t F(\tau, x(\tau)) d\tau, \qquad t \in [a, b],$$

является непрерывным на X.

Пусть  $x_* \in X$  произвольная функция. Используя (1.46), докажем, что отображение  $\varphi$  непрерывно в  $x_*$ . Пусть  $x \in X$ , и оценим разность

$$\begin{split} \|\varphi(x) - \varphi(x_*)\|_{\infty} &= \sup_{t \in [a,b]} |\varphi(x)(t) - \varphi(x_*)(t)| = \\ &= \sup_{t \in [a,b]} \left| \int_a^t F(\tau, x(\tau)) \, d\tau - \int_a^t F(\tau, x_*(\tau)) \, d\tau \right| = \\ &= \sup_{t \in [a,b]} \left| \int_a^t \left( F(\tau, x(\tau)) - F(\tau, x_*(\tau)) \right) \, d\tau \right| \le \\ &\le \sup_{t \in [a,b]} \int_a^t \left| F(\tau, x(\tau)) - F(\tau, x_*(\tau)) \right| \, d\tau = \\ &= \int_a^b \left| F(\tau, x(\tau)) - F(\tau, x_*(\tau)) \right| \, d\tau. \end{split}$$

Зададимся  $\varepsilon>0$ . Поскольку множество  $[a,b]\times[c,d]\subset\mathbb{R}^2$  является компактным, а функция F непрерывной, то на этом множестве она

является равномерно непрерывной, и, следовательно, существует такое  $\delta>0$ , что

$$\|(\tau_1, \sigma_1) - (\tau_2, \sigma_2)\|_2 < \delta \implies |F(\tau_1, \sigma_1) - F(\tau_2, \sigma_2)| < \frac{\varepsilon}{b - a}.$$
(1.48)

Если теперь

$$||x - x_*||_{\infty} = \sup_{\tau \in [a,b]} |x(\tau) - x_*(\tau)| < \delta,$$

то тогда для всех  $\tau \in [a,b]$  имеем, что  $|x(\tau)-x_*(\tau)| < \delta$ , а значит

$$\|(\tau, x(\tau)) - (\tau, x_*(\tau))\|_2 = \|(0, x(\tau) - x_*(\tau))\|_2 = |x(\tau) - x_*(\tau)| < \delta,$$

И

$$\left| F(\tau, x(\tau)) - F(\tau, x_*(\tau)) \right| < \frac{\varepsilon}{b-a}$$

для всех  $\tau \in [a, b]$ . Таким образом,

$$\int_{a}^{b} \left| F(\tau, x(\tau)) - F(\tau, x_{*}(\tau)) \right| d\tau \le \int_{a}^{b} \frac{\varepsilon}{b - a} d\tau = \frac{\varepsilon}{b - a} \tau \Big|_{\tau = a}^{\tau = b} = \varepsilon.$$

Итак, для произвольного  $\varepsilon > 0$  необходимое  $\delta > 0$  находится из условия (1.48).

## 1.8.2 Непрерывные отображения на компактах

**Теорема 1.8.7.** Пусть  $(E_1, \|\cdot\|_1)$  и  $(E_2, \|\cdot\|_2)$  — банаховы пространства. Пусть  $X \subset E_1$  — компактное подмножество  $E_1$ , и отображение  $\varphi \colon X \to E_2$  непрерывно на X. Тогда  $\varphi(X)$  является компактным подмножеством  $E_2$ .

Доказательство. Докажем, что  $\varphi(X)$  является счетно компактным, что, в силу теоремы 1.7.27, будет означать его компактность.

Пусть  $Y \subset \varphi(X)$  — произвольное бесконечное множество, и докажем, что Y имеет предельную точку в f(X).

Рассмотрим множество  $\varphi^{-1}(Y) \subset X$ . Оно также будет бесконечным множеством, поскольку количество элементов в  $\varphi^{-1}(Y)$  не

меньше, чем количество элементов в Y. А, поскольку X является компактным и, следовательно, счетно компактным, то существует  $\boldsymbol{x}_* \in X$ , являющийся предельной точкой  $\boldsymbol{\varphi}^{-1}(Y)$ . Так как  $\boldsymbol{x}_*$  является предельной точкой  $\boldsymbol{\varphi}^{-1}(Y)$ , то существует такая последовательность  $(\boldsymbol{x}_k)_{k=1}^{\infty}$ ,  $\boldsymbol{x}_k \in \boldsymbol{\varphi}^{-1}(Y)$ , для которой  $\boldsymbol{x}_k \to \boldsymbol{x}_*$ . Но тогда  $\boldsymbol{\varphi}(\boldsymbol{x}_k) \in Y$ ,  $\boldsymbol{\varphi}(\boldsymbol{x}_*) \in \boldsymbol{f}(X)$ , и  $\boldsymbol{\varphi}(\boldsymbol{x}_k) \to \boldsymbol{\varphi}(\boldsymbol{x}_*)$  в силу непрерывности  $\boldsymbol{\varphi}$  в точке  $\boldsymbol{x}_*$ . Таким образом  $\boldsymbol{\varphi}(\boldsymbol{x}_*)$  является предельной точкой Y в  $\boldsymbol{\varphi}(X)$ .

**Теорема 1.8.8** (Вейерштрасс). Пусть E -банахово пространство,  $u \ X \subset E -$ компактное подмножество E. Пусть  $f \colon X \to \mathbb{R}$  непрерывное на X отображение. Тогда

(a) отображение f ограничено на X, т.е. существует  $C \in \mathbb{R},$  для которого

$$|f(\boldsymbol{x})| \leq C$$

для всех  $\boldsymbol{x} \in X$ :

(b) отображение f достигает на X своих минимального и максимального значений, т.е. существуют такие  $x_*, x^* \in X$ , что

$$\inf_{\boldsymbol{x} \in X} f(\boldsymbol{x}) = f(\boldsymbol{x}_*), \qquad \sup_{\boldsymbol{x} \in X} f(\boldsymbol{x}) = f(\boldsymbol{x}^*).$$

Доказательство. Применяя теорему 1.8.7 к отображению f, имеем, что  $f(X) \subset \mathbb{R}$  является компактным подмножеством  $\mathbb{R}$ . Таким образом, множество f(X) является ограниченным и замкнутым (теорема 1.7.12). Из его ограниченности следует (a), а из замкнутости (b), поскольку значения

$$\inf_{\boldsymbol{x} \in X} f(\boldsymbol{x}) = \inf f(X), \qquad \sup_{\boldsymbol{x} \in X} f(\boldsymbol{x}) = \sup f(X)$$

являются предельными точками f(X).

**Определение 1.8.9.** Пусть  $(E_1, \|\cdot\|_1), (E_2, \|\cdot\|_2)$  — линейные нормированные пространства, и  $X \subset E_1$ . Отображение  $\varphi \colon X \to E_2$ 

называется равномерно непрерывным на X, если выполнено следующее условие

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall \mathbf{x}', \mathbf{x}'' \in X :$$

$$\|\mathbf{x}' - \mathbf{x}''\|_{1} < \delta \quad \Longrightarrow \quad \|\mathbf{\varphi}(\mathbf{x}') - \mathbf{\varphi}(\mathbf{x}'')\|_{2} < \varepsilon. \quad (1.49)$$

Замечание 1.8.10. Из условия (1.49) сразу следует, что отображение равномерно непрерывное на X является непрерывным на X.

**Теорема 1.8.11.** Пусть  $(E_1, \|\cdot\|_1)$  — банахово пространство, а  $(E_2, \|\cdot\|_2)$  — линейное нормированное пространство,  $X \subset E_1$ , и отображение  $\varphi \colon X \to E_2$  непрерывно на X. Если X компактно, то отображение  $\varphi$  является равномерно непрерывным на X.

Доказательство. Доказательство проведем от противного. Пусть  $\varphi$  не является равномерно непрерывным, т.е. выполняется следующее условие:

$$\exists \varepsilon > 0 \quad \forall \delta > 0 \quad \exists \mathbf{x'}, \mathbf{x''} \in X :$$

$$\|\mathbf{x'} - \mathbf{x''}\|_1 < \delta \quad \text{и} \quad \|\mathbf{\varphi}(\mathbf{x'}) - \mathbf{\varphi}(\mathbf{x''})\|_2 \ge \varepsilon. \quad (1.50)$$

Зафиксируем  $\varepsilon > 0$ , удовлетворяющее условию (1.50), и для каждого  $\delta_n = \frac{1}{n}$  найдем соответствующие пары точек  $\boldsymbol{x}_n', \boldsymbol{x}_n'' \in X$ , удовлетворяющие условию (1.50). Последовательность  $(\boldsymbol{x}_n')_{n=1}^{\infty}$  имеет предельную точку  $\boldsymbol{x}_* \in X$ , поскольку X является счетно компактным, и, следовательно, существует подпоследовательность  $(\boldsymbol{x}_{n_k}')_{k=1}^{\infty}$  последовательности  $(\boldsymbol{x}_n')_{n=1}^{\infty}$ , сходящаяся к  $\boldsymbol{x}_*$ .

Докажем, что подпоследовательность  $(x_{n_k}'')_{k=1}^{\infty}$  последовательности  $(x_n'')_{n=1}^{\infty}$  также сходится к  $x_*$ . Действительно, для произвольного  $\tilde{\delta} > 0$ , используя сходимости  $(x_{n_k})$  к  $x_*$  и  $(\frac{1}{n_k})$  к 0, выберем  $N \in \mathbb{N}$  таким, чтобы

$$\|oldsymbol{x}_{n_k}' - oldsymbol{x}_*\|_1 < rac{ ilde{\delta}}{2}$$
 и  $rac{1}{n_k} < rac{ ilde{\delta}}{2}$ 

для всех k > N. Тогда для k > N имеем, что

$$\|m{x}_{n_k}'' - m{x}_*\|_1 = \|m{x}_{n_k}'' - m{x}_{n_k}' + m{x}_{n_k}' - m{x}_*\|_1 \le$$

$$\leq \|m{x}_{n_k}'' - m{x}_{n_k}'\|_1 + \|m{x}_{n_k}' - m{x}_*\|_1 \leq \\ \leq \frac{1}{n_k} + \|m{x}_{n_k}' - m{x}_*\|_1 \leq \frac{\tilde{\delta}}{2} + \frac{\tilde{\delta}}{2} = \tilde{\delta},$$

что и доказывает сходимость  $(x_{n_k}'')$  к  $x_*$ .

Теперь, используя зафиксированное  $\varepsilon>0$  и непрерывность отображения  $\varphi$  в точке  $x_*$  выберем такое  $\delta>0$ , что

$$\|oldsymbol{x} - oldsymbol{x}_*\|_1 < \delta \qquad \Longrightarrow \qquad \|oldsymbol{arphi}(oldsymbol{x}) - oldsymbol{arphi}(oldsymbol{x}_*)\|_2 < rac{arepsilon}{2},$$

а, поскольку последовательности  $(x'_{n_k})$  и  $(x''_{n_k})$  сходятся к  $x_*$ , то для найденного  $\delta$  выберем  $k_0 \in \mathbb{N}$  таким образом, чтобы

$$\|\boldsymbol{x}_{n_{k_0}}' - \boldsymbol{x}_*\|_1 < \delta, \qquad \|\boldsymbol{x}_{n_{k_0}}'' - \boldsymbol{x}_*\|_1 < \delta,$$

и, следовательно, будем иметь, что

$$\|\boldsymbol{\varphi}(\boldsymbol{x}_{n_{k_0}}') - \boldsymbol{\varphi}(\boldsymbol{x}_*)\|_2 < \frac{\varepsilon}{2}, \qquad \|\boldsymbol{\varphi}(\boldsymbol{x}_{n_{k_0}}'') - \boldsymbol{\varphi}(\boldsymbol{x}_*)\|_2 < \frac{\varepsilon}{2}.$$

Тогда, с одной стороны,

$$\|\boldsymbol{\varphi}(\boldsymbol{x}_n') - \boldsymbol{\varphi}(\boldsymbol{x}_n'')\|_2 \ge \varepsilon$$

для всех  $n \in \mathbb{N}$  по предполагаемому условию, а, с другой стороны,

$$\begin{split} \|\varphi(x_{n_{k_0}}') - \varphi(x_{n_{k_0}}'')\|_2 &= \|\varphi(x_{n_{k_0}}') - \varphi(x_*) + \varphi(x_*) - \varphi(x_{n_{k_0}}'')\|_2 \leq \\ &\leq \|\varphi(x_{n_{k_0}}') - \varphi(x_*)\|_2 + \|\varphi(x_*) - \varphi(x_{n_{k_0}}'')\|_2 < \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon, \end{split}$$

что приводит к противоречию.

# 1.8.3 Сжатия. Теорема Банаха о неподвижной точке

Определение 1.8.12. Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство и  $X \subset E$ . Отображение  $\varphi \colon X \to X$  называется *сжатием на* X, если существует такое  $q \in (0,1)$ , что

$$\|\varphi(x') - \varphi(x'')\| \le q \|x' - x''\|$$

для всех  $x', x'' \in X$ .

 $\Pi$ ример 1.8.13. Пусть  $\varphi \colon \mathbb{R} \to \mathbb{R}$  задано как  $\varphi(t) = \frac{1}{2} \sin t$ . Тогда  $\varphi$  является сжатием на  $X = \mathbb{R}$ .

Действительно, для произвольных  $t',t''\in\mathbb{R}$  имеем:

$$\begin{aligned} |\varphi(t') - \varphi(t'')| &= \left| \frac{1}{2} \sin t' - \frac{1}{2} \sin t'' \right| = \frac{1}{2} |\sin t' - \sin t''| = \\ &= \frac{1}{2} |2 \sin \frac{t' - t''}{2} \cos \frac{t' + t''}{2} | = \left| \sin \frac{t' - t''}{2} \right| \left| \cos \frac{t' + t''}{2} \right| \le \\ &\le \left| \sin \frac{t' - t''}{2} \right| \le \frac{1}{2} |t' - t''|. \end{aligned}$$

Таким образом, имеем, что  $q = \frac{1}{2} < 1$ , и  $\varphi$  является сжатием.

Пример 1.8.14. Пусть  $E = \mathcal{C}([a,b]), k \in \mathcal{C}([a,b] \times [a,b]), b \in \mathcal{C}([a,b])$  — фиксированные непрерывные функции, X = E и  $\varphi \colon X \to X$  задано как

$$\varphi(x)(t) = \int_{a}^{t} k(t, s)x(s) ds + b(t), \qquad x \in X.$$

Возьмем произвольные  $x', x'' \in X$ , и рассмотрим  $\|\varphi(x') - \varphi(x'')\|$ . Имеем

$$\|\varphi(x') - \varphi(x'')\| = \sup_{t \in [a,b]} |\varphi(x')(t) - \varphi(x'')(t)| =$$

$$= \sup_{t \in [a,b]} |\left(\int_a^t k(t,s)x'(s) \, ds + b(t)\right) -$$

$$-\left(\int_a^t k(t,s)x''(s) \, ds + b(t)\right)| =$$

$$= \sup_{t \in [a,b]} \left|\int_a^t \left(k(t,s)x'(s) - k(t,s)x''(s)\right) \, ds\right| =$$

$$= \sup_{t \in [a,b]} \left|\int_a^t k(t,s)\left(x'(t) - x''(t)\right) \, ds\right| \le$$

$$\le \sup_{t \in [a,b]} \int_a^t |k(t,s)| |x'(s) - x''(s)| \, ds \le$$

$$\leq \sup_{t \in [a,b]} \int_{a}^{t} |k(t,s)| \|x' - x''\| ds =$$

$$= \|x' - x''\| \sup_{t \in [a,b]} \int_{a}^{t} |k(t,s)| ds \leq$$

$$\leq \|x' - x''\| \int_{a}^{b} \sup_{t \in [a,b]} |k(t,s)| ds.$$

Таким образом, если

$$q = \int_{a}^{b} \sup_{t \in [a,b]} |k(t,s)| ds < 1,$$

то  $\varphi$  является сжатием.

**Утверждение 1.8.15.** Пусть  $(E, \|\cdot\|)$  — линейное нормированное пространство и  $X \subset E$ . Если  $\varphi \colon X \to X$  является сжатием на X, то  $\varphi$  равномерно непрерывно на X.

Доказательство. Действительно, в силу определения сжатия 1.8.12 для произвольного  $\varepsilon > 0$  в определении (1.49) достаточно положить  $\delta = \varepsilon$ .

**Определение 1.8.16.** Пусть X — множество, и  $\varphi: X \to X$ . Элемент  $x_* \in X$  называется неподвижной точкой относительно  $\varphi$ , если

$$\boldsymbol{arphi}(oldsymbol{x}_*) = oldsymbol{x}_*.$$

**Теорема 1.8.17** (Банах). Пусть E- банахово пространство,  $X \subset E-$  замкнутое подмножество  $E, u \varphi \colon X \to X$  является сжатием на X. Тогда  $\varphi$  имеет в X неподвижную точку, u эта неподвижная точка единственна для  $\varphi$  в X.

Доказательство. Пусть  $x_0 \in X$  — произвольная точка. Для каждого  $n \in \mathbb{N}$  определим по индукции

$$x_n = \varphi(x_{n-1}).$$

Тогда, в силу того, что  $\varphi$  является сжатием, для  $n \in \mathbb{N}$  имеем, что

$$\|x_{n+1} - x_n\| = \|\varphi(x_n) - \varphi(x_{n-1}\| \le q\|x_n - x_{n-1}\|.$$

Обозначив  $d = \| \boldsymbol{x}_1 - \boldsymbol{x}_0 \|$ , по индукции получим

$$\|x_{n+1} - x_n\| \le q \|x_n - x_{n-1}\| \le q^2 \|x_{n-1} - x_{n-2}\| \le \le \dots \le q^n \|x_1 - x_0\| = q^n d.$$

Докажем, что последовательность  $(x_n)_{n=1}^{\infty}$  является фундаментальной в банаховом пространстве E, а, значит, сходящейся. Для  $n \in \mathbb{N}$  и  $p \in \mathbb{Z}_+$  имеем

$$\|\boldsymbol{x}_{n+p} - \boldsymbol{x}_n\| = \|\boldsymbol{x}_{n+p} - \boldsymbol{x}_{n+p-1} + \boldsymbol{x}_{n+p-1} - \boldsymbol{x}_{n+p-2} + \\ + \boldsymbol{x}_{n+p-2} - \boldsymbol{x}_{n+p-3} + \ldots + \boldsymbol{x}_{n+1} - \boldsymbol{x}_n\| \le \\ \le \|\boldsymbol{x}_{n+p} - \boldsymbol{x}_{n+p-1}\| + \|\boldsymbol{x}_{n+p-1} - \boldsymbol{x}_{n+p-2}\| + \\ + \|\boldsymbol{x}_{n+p-2} - \boldsymbol{x}_{n+p-3}\| + \ldots + \|\boldsymbol{x}_{n+1} - \boldsymbol{x}_n\| \le \\ \le q^{n+p-1}d + q^{n+p-2}d + q^{n+p-3}d + q^{n+q}d = \\ = q^n(q^{p-1} + q^{p-2} + \ldots + 1)d = q^n \frac{1-q^p}{1-q}d < q^n \frac{1}{1-q}d.$$

Поскольку q < 1, то  $q^n \to 0$  при  $n \to \infty$ , что и доказывает фундаментальность  $(\boldsymbol{x}_n)_{n=1}^{\infty}$ , а значит и существование предела

$$oldsymbol{x}_* = \lim_{n o \infty} oldsymbol{x}_n.$$

Так как  $x_n \in X$  для всех n, и X замкнуто, то  $x_* \in X$ .

Докажем теперь, что  $\boldsymbol{x}_*$  является неподвижной точкой для  $\boldsymbol{\varphi}$ . Поскольку отображение  $\boldsymbol{\varphi}$  является сжатием, то оно равномерно непрерывно (утверждение 1.8.15), и, в частности, непрерывно в точке  $\boldsymbol{x}_*$ . Поэтому

$$oldsymbol{arphi}(oldsymbol{x}_*) = oldsymbol{arphi}(\lim_{n o \infty} oldsymbol{x}_n) = \lim_{n o \infty} oldsymbol{arphi}(oldsymbol{x}_n) = \lim_{n o \infty} oldsymbol{x}_{n+1} = oldsymbol{x}_*.$$

Наконец, покажем, что  $\varphi$  имеет единственною неподвижную точку. Если их две,  $x_*'$  и  $x_*''$ , и  $x_*' \neq x_*''$ , то

$$\|x'_* - x''_*\| = \|\varphi(x'_*) - \varphi(x''_*)\| \le q \|x'_* - x''_*\|,$$

т.е.

$$(1-q)\|\boldsymbol{x}_*'-\boldsymbol{x}_*''\| \le 0,$$

что не возможно, поскольку q < 1.

Следствие 1.8.18. Пусть E — банахово пространство,  $X \subset E$  является замкнутым подмножеством, и  $\varphi: X \to X$ . Если существует такое  $n_0 \in \mathbb{N}$ , что

$$arphi^{n_0} = \underbrace{arphi \circ arphi \circ \ldots \circ arphi}_{n_0 ext{ pas}}$$

является сжатием на X, то  $\varphi$  имеет неподвижную точку в X, и она единственна.

Доказательство. В силу теоремы 1.8.17 отображение  $\varphi^{n_0}$  имеет неподвижную точку  $x_*$ , и она единственна. Но для  $x_*' = \varphi(x_*)$  имеем, что

$$\boldsymbol{\varphi}^{n_0}(\boldsymbol{x}_*') = \boldsymbol{\varphi}^{n_0}(\boldsymbol{\varphi}(\boldsymbol{x}_*)) = \boldsymbol{\varphi}^{n_0+1}(\boldsymbol{x}_*) = \boldsymbol{\varphi}(\boldsymbol{\varphi}^{n_0}(\boldsymbol{x}_*)) = \boldsymbol{\varphi}(\boldsymbol{x}_*) = \boldsymbol{x}_*'.$$

Таким образом,  $\boldsymbol{x}'_*$  также является неподвижной точкой отображения  $\boldsymbol{\varphi}^{n_0}$ . В силу единственности неподвижной точки имеем, что  $\boldsymbol{x}'_* = \boldsymbol{x}_*$ , то есть

$$\boldsymbol{\varphi}(x_*) = \boldsymbol{x}_*,$$

и  $x_*$  является неподвижной точкой отображения  $\varphi$ .

Единственность неподвижной точки для  $\varphi$  сразу следует из того, что любая неподвижная точка для  $\varphi$  также является неподвижной точкой для отображения  $\varphi^{n_0}$ , которое имеет единственную неподвижную точку.

**Теорема 1.8.19** (Брауэр). Пусть  $X = B[0; R] \subset \mathbb{R}^n$  — замкнутый шар радиуса  $R \in \mathbb{R}^n$ , и отображение  $\varphi \colon X \to X$  непрерывно на X. Тогда  $\varphi$  имеет в X неподвижную точку (не обязательно единственную).

Доказательство. Без доказательства.

Пример 1.8.20. Пусть n=2, и  $\varphi\colon X\to X$  задано как

$$\varphi(x_1, x_2) = (x_1, -x_2).$$

Тогда все точки множества

$$\{(x,0): |x| \le R\}$$

являются неподвижными относительно  $\varphi$ .

**Определение 1.8.21.** Пусть E — линейное нормированное пространство. Множество  $X \subset E$  называется *выпуклым*, если для произвольных  $x', x'' \in X$  имеем, что

$$[x', x''] = \{(1-t)x' + tx'' : t \in [0, 1]\} \subset X.$$

**Теорема 1.8.22** (Шаудер-Тихонов). Пусть E — линейное нормированное пространство,  $u \ X \subset E$  — выпуклое компактное подмножество E. Если отображение  $\varphi \colon X \to X$  непрерывно на X, то оно имеет в X неподвижную точку.

Доказательство. Без доказательства.

#### 1.8.4 Приложение: теорема Пикара

В этом разделе  $D \subset \mathbb{R}^2$  является замкнутой ограниченной областью, и  $(x_0, y_0)$  — внутренняя точка  $D, f \colon D \to \mathbb{R}$  — некоторая функция. Промежуток  $I \subset \mathbb{R}$  будет пониматься как конечный или бесконечный интервал, полуинтервал или отрезок.

Определение 1.8.23. Уравнение

$$\frac{dy}{dx} = f(x, y) \tag{1.51}$$

называется скалярным дифференциальным уравнением первого порядка, разрешенным относительно производной.

Решением дифференциального уравнения (1.51) на промежутке  $I \subset \mathbb{R}$  называется функция  $g \colon I \to \mathbb{R}$ , которая удовлетворяет следующим условиям:

#### 1.8. НЕПРЕРЫВНЫЕ ОТОБРАЖЕНИЯ

- 1) g имеет производную в каждой точке промежутка I;
- 2) график функции g принадлежит D при  $x \in I$ , т.е.  $(x, g(x)) \in D$  для всех  $x \in I$ ;
- 3) имеет место равенство

$$\frac{dg}{dx} = f(x, g(x)) \tag{1.52}$$

для всех  $x \in I$ .

#### Определение 1.8.24. Система

$$\begin{cases}
y' = f(x,y), \\
y(x_0) = y_0
\end{cases}$$
(1.53)

называется задачей Коши для дифференциального уравнения первого порядка. Условие  $y(x_0) = y_0$  называется начальным условием.

Функция  $g: I \to \mathbb{R}$  называется решением задачи Коши (1.53) на промежутке  $I \subset \mathbb{R}$ , если  $x_0 \in I$ , функция g является решением дифференциального уравнения в (1.53) и  $g(x_0) = y_0$ .

**Утверждение 1.8.25.** Непрерывно дифференцируемая функция g(x),  $x \in I$ , является решением задачи Коши (1.53) тогда и только тогда, когда g является решением интегрального уравнения

$$g(x) = y_0 + \int_{x_0}^x f(t, g(t)) dt, \qquad x, x_0 \in I.$$
 (1.54)

Доказательство. Пусть g является решением интегрального уравнения (1.54). Тогда

$$g(x_0) = y_0 + \int_{x_0}^{x_0} f(t, g(t)) dt = y_0,$$

поскольку интеграл от произвольной непрерывной функции на отрезке  $[x_0, x_0]$  равен 0. Далее,

$$g'(x) = \left(y_0 + \int_{x_0}^x f(t, g(t)) dt\right)_x' = f(x, g(x)).$$

Таким образом, g(x) является решением задачи Коши (1.53).

Обратно, пусть g является решением задачи Коши. Из этого, в частности, следует, что

$$g'(t) = f(t, g(t)), \qquad t \in I.$$

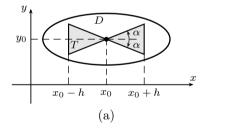
Пусть  $x_0, x \in I$ . Проинтегрируем предыдущее равенства по отрезку  $[x_0, x]$ :

$$\int_{x_0}^x g'(t) \, dt = \int_{x_0}^x f(t, g(t)) \, dt.$$

Отсюда имеем, что

$$g(x) - g(x_0) = \int_{x_0}^x f(t, g(t)) dt.$$

Используя начальное условие  $g(x_0) = y_0$ , видим, что g удовлетворяет интегральному уравнению (1.54).



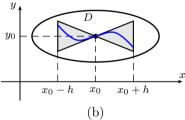


Рис. 1.24: Выбор величины h,  $\operatorname{tg} \alpha = M$ .

**Лемма 1.8.26.** Пусть  $f \colon D \to \mathbb{R}$  непрерывна на D, и положим

$$M = \sup_{(x,y)\in D} |f(x,y)|.$$

 $\Pi y cm b \ h > 0 \ makoe, что$ 

$$T = \{(x, y) \in D : |x - x_0| \le h, |y - y_0| \le M|x - x_0|\} \subset D,$$

см. рис. 1.21 (а). Пусть X — множество всех непрерывных функций на  $I_h = [x_0 - h, x_0 + h]$ , графики которых лежат в T (и проходят через точку  $(x_0, y_0)$ ) (рис. 1.21 (b)), т.е.

$$X = \{ y \in \mathcal{C}(I_h; \mathbb{R}) : |y(x) - y_0| \le M|x - x_0|, \ x \in I_h \}.$$
 (1.55)

Определим отображение  $\varphi: X \to \mathcal{C}(I_h; \mathbb{R})$  как

$$\varphi(g)(x) = y_0 + \int_{x_0}^x f(t, g(t)) dt, \qquad g \in X.$$
 (1.56)

Тогда множество X является замкнутым в  $\mathcal{C}(I_h,\mathbb{R}),\ u\ \varphi(X)\subset X.$ 

Доказательство. Докажем замкнутость X.

Пусть  $g_* = \lim_{n\to\infty} g_n$  в  $\mathcal{C}(I_h; \mathbb{R})$ , и  $g_n \in X$ , т.е

$$|g_n(x) - y_0| \le M|x - x_0| \tag{1.57}$$

для всех  $x\in I_h$ . Поскольку  $\|g_n-g_*\|_\infty\to 0$  при  $n\to\infty$ , то для каждого  $x\in I_h$  имеем, что

$$g_*(x) = \lim_{n \to \infty} g_n(x).$$

Поэтому для каждого фиксированного  $x \in I_h$ , переходя к пределу в (1.57), получим:

$$|g_*(x) - y_0| = |\lim_{n \to \infty} g_n(x) - y_0| = \lim_{n \to \infty} |g_n(x) - y_0| \le$$
  
 $\le \lim_{n \to \infty} M|x - x_0| = M|x - x_0|.$ 

Это доказывает, что  $g_* \in X$ .

Докажем инвариантность X относительно  $\varphi$ , т.е., что  $\varphi(X) \subset X$ . Пусть  $g \in X$ . Докажем, что функция  $\varphi(g)$  удовлетворяет неравенству

$$|\varphi(g)(x) - y_0| \le M|x - x_0|.$$

Поскольку  $g \in X$ , то ее график лежит в  $T \subset D$ , и, следовательно,

$$|f(t,g(t))| \le \sup_{(x,y)\in D} |f(x,y)| = M, \quad t\in I_h.$$

Поэтому для  $x \in [x_0, x_0 + h]$  имеем

$$|\varphi(g)(x) - y_0| = |y_0 + \int_{x_0}^x f(t, g(t)) dt - y_0| = |\int_{x_0}^x f(t, g(t)) dt| \le \int_{x_0}^x |f(t, g(t))| dt \le \int_{x_0}^x M dt = M|x - x_0|.$$

Для  $x \in [x_0 - h, x_0]$  доказательство аналогично. Следовательно,  $\varphi(g) \in X$ .

**Определение 1.8.27.** Функция  $f \in \mathcal{F}(D; \mathbb{R})$  удовлетворяет *условию Лишица* по y на D, если существует постоянная L такая, что

$$|f(x,y') - f(x,y'')| \le L|y' - y''| \tag{1.58}$$

для всех  $(x, y'), (x, y'') \in D$ . Неравенство (1.58) называется условием Липшица, а число L — постоянной Липшица.

**Лемма 1.8.28.** Пусть f является непрерывной на D и удовлетворяет условию Липшица по g на g. Пусть g, g, g и g и g на g лемме 1.8.26. Тогда для всех g',  $g'' \in X$  и g и g и имеем

$$|\varphi(g')(x) - \varphi(g'')(x)| \le L \left| \int_{x_0}^x |g'(t) - g''(t)| dt \right|$$
 (1.59)

Доказательство. Используя условие Липшица (1.58), имеем для  $x \in [x_0, x_0 + h]$ :

$$|\varphi(g')(x) - \varphi(g'')(x)| = |y_0 + \int_{x_0}^x f(t, g'(t)) dt - y_0 - \int_{x_0}^x f(t, g''(t)) dt| =$$

$$= \left| \int_{x_0}^x (f(t, g'(t)) - f(t, g''(t))) dt \right| \le \int_{x_0}^x |f(t, g'(t)) - f(t, g''(t))| dt \le$$

$$\le \int_{x_0}^x L|g'(t) - g''(t)| dt = L \int_{x_0}^x |g'(t) - g''(t)| dt.$$

Для  $x \in [x_0 - h, x_0]$  доказательство аналогично.

**Лемма 1.8.29.** В обозначениях следствия 1.8.18 и леммы 1.8.28 и при выполнении условий леммы 1.8.28 имеем

$$|\varphi^n(g')(x) - \varphi^n(g'')(x)| \le L^n \|g' - g''\|_{\infty} \frac{|x - x_0|^n}{n!}.$$
 (1.60)

Доказательство. Доказательство произведем по индукции для  $x \in [x_0, x_0 + h]$ . При n = 1 необходимую оценку дает лемма 1.8.28. А именно,

$$|\varphi(g')(x) - \varphi(g'')(x)| \le L \int_{x_0}^x |g'(t) - g''(t)| dt \le L \int_{x_0}^x ||g' - g''||_{\infty} dt =$$

$$= L||g' - g''||_{\infty} \int_{x_0}^x dt = L||g' - g''||_{\infty} (x - x_0).$$

Пусть имеет место оценка (1.60) для (n-1), т.е.

$$|\varphi^{n-1}(g')(x) - \varphi^{n-1}(g'')(x)| \le L^{n-1} \|g' - g''\|_{\infty} \frac{(x-x_0)^{n-1}}{(n-1)!}.$$
 (1.61)

Тогда, используя лемму 1.8.28 и оценку (1.61), имеем:

$$\begin{aligned} |\varphi^{n}(g')(x) - \varphi^{n}(g'')(x)| &= \left| \varphi(\varphi^{n-1}(g'))(x) - \varphi(\varphi^{n-1}(g''))(x) \right| \leq \\ &\leq L \int_{x_{0}}^{x} \left| \varphi^{n-1}(g')(t) - \varphi^{n-1}(g'')(t) \right| dt \leq \\ &\leq L \int_{x_{0}}^{x} L^{n-1} \|g' - g''\|_{\infty} \frac{(t - x_{0})^{n-1}}{(n-1)!} dt = \\ &= L^{n} \|g' - g''\|_{\infty} \frac{1}{(n-1)!} \int_{x_{0}}^{x} (t - x_{0})^{n-1} dt = \\ &= L^{n} \|g' - g''\|_{\infty} \frac{1}{(n-1)!} \frac{(t - x_{0})^{n}}{n} \Big|_{t=x_{0}}^{t=x} = \\ &= L^{n} \|g' - g''\|_{\infty} \frac{(x - x_{0})^{n}}{n!}. \qquad \Box \end{aligned}$$

**Теорема 1.8.30** (Пикар). Пусть D — замкнутая, ограниченная область в  $\mathbb{R}^2$ ,  $(x_0, y_0)$  — внутренняя точка D. Пусть функция f

непрерывна и удовлетворяет условию Липшица по у на D. Положим

$$M = \max_{(x,y)\in D} |f(x,y)|,$$

и выберем h таким, чтобы  $T \subset D$  (см. рис. 1.24).

Тогда задача Коши (1.53) имеет решение y = g(x) на промежутке  $I_h = [x_0 - h, x_0 + h]$ , и это решение единственно.

Доказательство. Определим  $X \subset \mathcal{C}(I_h; \mathbb{R})$  и  $\varphi \colon X \to X$  как в лемме 1.8.26. Согласно лемме 1.8.29 для  $g', g'' \in X$  имеем, что

$$\|\varphi^{n}(g') - \varphi(g'')\|_{\infty} = \sup_{x \in I_{h}} |\varphi^{n}(g')(x) - \varphi^{n}(g'')(x)| =$$

$$= \sup_{x \in I_{h}} L^{n} \|g' - g''\|_{\infty} \frac{|x - x_{0}|^{n}}{n!} =$$

$$= L^{n} \|g' - g''\|_{\infty} \frac{h}{n!}.$$

Поскольку

$$q_n = ||g' - g''||_{\infty} \frac{L^n h^n}{n!} \to 0,$$

то существует такое  $n_0 \in \mathbb{N}$ , что  $q_{n_0} < 1$ . Но тогда  $\varphi^{n_0}$  будет сжатием на X, и по следствию 1.8.18 отображение  $\varphi$  имеет единственную неподвижную точку  $g_* \in X$ , т.е. имеем, что

$$g_*(x) = y_0 + \int_{x_0}^x f(t, g_*(t)) dt,$$

и, согласно утверждению 1.8.25,  $g_*$  является решением задачи Коши.

### Приложение А

## Дополнительные задачи

### А.1 Линейные нормированные пространства

**1.1.** (2 б.) **Пространства**  $\ell_p$ . Пусть p,q>0 такие, что  $\frac{1}{p}+\frac{1}{q}=1,\,n\in\mathbb{N}$  и  $a_k,b_k\in\mathbb{R},\,k=1,\dots n$ .

1. (а) Доказать неравенство Гёльдера:

$$\sum_{k=1}^{n} |a_k b_k| \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |b_k|^q\right)^{\frac{1}{q}}, \qquad n \in \mathbb{N}.$$

(b) Доказать неравенство Минковского:

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{p}}$$

2. Пусть  $p \in [1, +\infty)$ . Рассмотрим функцию  $\|\cdot\|_p \colon \mathbb{R}^\infty \to \overline{\mathbb{R}}$ , заданную на  $\boldsymbol{x} = (x_1, x_2, \ldots)$  как

$$\|\boldsymbol{x}\| = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}},$$

и положим

$$\ell_p = \{ \boldsymbol{x} \in \mathbb{R}^{\infty} : \|\boldsymbol{x}\|_p < \infty \}.$$

Доказать, что  $\ell_p$  является линейным нормированным пространством над  $\mathbb{R}$ .

Литература: [3, стр. 58, 61].

#### 1.2. (1 б.) Теорема о вложенных шарах.

Линейное нормированное пространство E является полным тогда и только тогда, когда произвольная последовательность замкнутых вложенных шаров, радиусы которых стремятся к 0, имеет непустое пересечение.

Литература: [3, стр. 76], [4, стр. 40].

#### 1.3. (2 б.) Теорема Бэра.

Пусть E — линейное нормированное пространство. Меожество  $X \subset E$  называется *плотным в* множестве  $Y \subset E$ , если  $\overline{X} \supset Y$ . Множество M называется *нигде не плотным*, если оно не плотно в каждом открытом шаре  $B(\boldsymbol{x};r)$ .

Доказать, что банахово пространство не может быть представлено как счетное объединение нигде не плотных множеств. Литература: [3, стр. 78], [4, стр. 43].

#### 1.4. (1 б.) Полунепрерывные функции.

Пусть E — линейное нормированное пространство. Функция  $f : E \to \mathbb{R}$  называется полунепрерывной снизу (соотв., сверху) в точке  $\mathbf{x}_0 \in E$ , если для любого  $\varepsilon > 0$  существует такая окресность U точки  $\mathbf{x}_0$ , что  $f(\mathbf{x}) > f(\mathbf{x}_0) - \varepsilon$  (соотв.  $f(\mathbf{x}) < f(\mathbf{x}_0) + \varepsilon$ ) для всех  $\mathbf{x} \in U$ .

- 1. Доказать, что функция  $f \colon E \to \mathbb{R}$  непрерывна в точке  $\boldsymbol{x}_0$  тогда и только тогда, когда она в  $\boldsymbol{x}_0$  полунепрерывна сверху и снизу.
- 2. Пусть  $f \colon E \to \mathbb{R}$  непрерывна в точке  $x_0$ , и  $1_{\{x_0\}}$  индикатор множества  $\{x_0\}$ . Доказать, что для  $A \in \mathbb{R}$  функция  $f_A = f + A \cdot 1_{\{x_0\}}$  является полунепрерывной снизу, если A > 0, и полунепрерывной сверху, если A < 0.
- 3. Доказать, что функция  $f \colon \mathbb{R} \to \mathbb{R}$ , заданная как f(x) = [x] (целая часть  $x \in \mathbb{R}$ ) является полунепрерывной сверху в каждой точке  $\mathbb{R}$ .

4. Доказать, что функция  $f \colon E \to \mathbb{R}$  является полунепрерывной сверху (соотв., снизу) в точке  $\boldsymbol{x}_0 \in E$  тогда и только тогда, когда функция -f полунепрерывна снизу (соотв., сверху) в точке  $\boldsymbol{x}_0$ .

Литература: [3, стр. 111].

#### 1.5. (2 б.) Полунепрерывные функции на компактах.

Пусть  $X \subset E$  является компактным в E, и функция  $f \colon X \to \mathbb{R}$  полунепрерывны сверху (соотв., снизу). Тогда f ограничена сверху (соотв. снизу) на X и достигает своего максимального (соотв., минимального) значения.

Литература: [3, стр. 112].

#### 1.6. (1 б.) Теорема Дини.

Пусть последовательность непрерывных функций на компакте поточечено убывает (или возрастает) к непрерывной функции. Доказать, что сходимость является равномерной.

Литература: [9, стр. 42].

#### 1.7. $(1 \, \text{б.})$ Критерий компактности в $\ell_2$ .

Доказать, что множество  $K \subset \ell_2$  компактно тогда и только тогда, когда

$$\lim_{N \to \infty} \sup_{\boldsymbol{x} \in K} \sum_{k=N}^{\infty} |x_k|^2 = 0,$$

где  $\mathbf{x} = (x_1, x_2, \ldots).$ 

Литература: [9, стр. 43].

#### **1.8.** (2 б.) **Критерий компактности в** $\mathcal{F}_b(\Omega; \mathbb{K})$ .

Доказать, что множество  $K \subset \mathcal{F}_b(\Omega; \mathbb{K})$  является компактным тогда и только тогда, когда выполнены следующие условия:

- (i) K замкнуто:
- (ii) K ограничено;
- (ііі) для любого  $\varepsilon > 0$  существует такое конечное семейство  $\{\Omega_k\}_{k=1}^m$ , что  $\bigcup_{k=1}^m \Omega_k = \Omega$ , и при каждом  $k=1,\ldots,m$  имеем

$$|f(\omega) - f(\omega')| < \varepsilon$$

для всех  $f \in K$  и  $\omega, \omega' \in \Omega_k$ . Литература: [9, стр. 44].

#### 1.9. (1 б.) Унитарное (евклидово) пространство.

Пусть H — линейное пространство над полем  $\mathbb{K}$  ( $\mathbb{C}$  или  $\mathbb{R}$ ), и каждой паре  $x, y \in H$  ставится в соответствие скаляр  $(x, y) \in \mathbb{K}$ . При этом функция  $(\cdot, \cdot) : H \times H \to \mathbb{K}$  удовлетворяет следующим свойствам:

- (i)  $(x, x) \ge 0$  для всех  $x \in H$ , причем (x, x) = 0 тогда и только тогда, когда x = 0;
- (ii)  $(\lambda \boldsymbol{x}, \boldsymbol{y}) = \lambda(\boldsymbol{x}, \boldsymbol{y})$  для всех  $\lambda \in \mathbb{K}$  и  $\boldsymbol{x}.\boldsymbol{y} \in H$ ;
- (i) (x+y,z) = (x,z) + (y,z) для всех  $x,y,z \in H$ ;
- $(\mathrm{iv}) \ ig( oldsymbol{x}, oldsymbol{y} ig) = \overline{ig( oldsymbol{y}, oldsymbol{x} ig)}, \, \mathrm{ec}$ ли  $\mathbb{K} = \mathbb{C}, \, \mathrm{и} \ ig( oldsymbol{x}, oldsymbol{y} ig) = ig( oldsymbol{y}, oldsymbol{x} ig), \, \mathrm{ec}$ ли  $\mathbb{K} = \mathbb{R}.$

Тогда пара  $(H, (\cdot, \cdot))$  называется эрмитовым пространством, если  $\mathbb{K} = \mathbb{C}$ , и евклидовым, если  $\mathbb{K} = \mathbb{R}$ .

Пусть H — унитарное или евклидово пространство.

- 1. Доказать, что  $|(\boldsymbol{x}, \boldsymbol{y})|^2 \leq (\boldsymbol{x}, \boldsymbol{x})(\boldsymbol{y}, \boldsymbol{y})$  (неравенство Коши--Буняковского).
- 2. Доказать, что функция  $\|\cdot\|_2 \colon H \to \mathbb{R}_+$ , заданная как  $\|x\|_2 = \sqrt{(x,x)}$  является нормой на H. Литература: [4, стр. 85].

# 1.10. (2 б.) Характеристическое свойство евклидовых пространств.

Пусть  $(E,\|\cdot\|)$  — линейное нормированное пространство над полем  $\mathbb{R}$ . Доказать, что норма  $\|\cdot\|$  порождается скалярным произведением на H, т.е. существует такое скалярное произведение  $(\cdot,\cdot)$ , что  $\|x\|=\sqrt{(x,x)}$ , тогда и только тогда, когда

$$\|x + y\|^2 + \|x - y\|^2 = 2(\|x\|^2 + \|y\|^2).$$

Литература: [3, стр. 176].

## Index

| Конечная $r$ -сетка, $78$           | ограниченная, <mark>35</mark>                  |
|-------------------------------------|------------------------------------------------|
| Многочлен                           | подпоследовательность, <mark>28</mark>         |
| тригонометрический, <mark>56</mark> | сходящаяся в $X, \frac{28}{}$                  |
| Множество                           | фундаментальная, <mark>33</mark>               |
| вполне ограниченное, 78             | Предел последовательности, 28                  |
| замыкание, <mark>44</mark>          | Преднорма на линейном про-                     |
| компактное, 67                      | странстве, $\frac{3}{}$                        |
| ограниченное, 35                    | Пространство                                   |
| предкомпактное, 77                  | $\mathbb{K}_2^n, 	extstyle{4}$                 |
| счетно компактное, 82               | $\mathbb{R}^n_1, 6$                            |
| Норма на линейном простран-         | $\mathbb{R}^n_\infty,  7$                      |
| $cte, \frac{3}{3}$                  | $\mathcal{C}(K), 	extstyle{15}$                |
| Нормы                               | $\ell_1, {\color{red}11}$                      |
| эквивалентные, <mark>17</mark>      | $\ell_{\infty},11$                             |
| Окрестность, 24                     | $\ell_p, 13$                                   |
| Подмножество                        | $\mathcal{F}_b(\Omega;\mathbb{K}), rac{14}{}$ |
| замкнутое, <mark>23</mark>          | банахово, <mark>36</mark>                      |
| открытое, <mark>23</mark>           | линейное нормированное, $3$                    |
| плотное, $45$                       | полное, <mark>36</mark>                        |
| Подпокрытие, 67                     | Семейство подмножеств                          |
| Покрытие, 67                        | центрированное, 69                             |
| открытое, <mark>67</mark>           | центрированное в $X, 69$                       |
| Последовательность                  | Семейство функций                              |
| Коши, <mark>33</mark>               | равномерно ограниченное,                       |
| в $X, 27$                           | 88                                             |

#### INDEX

```
равностепенно непрерывных, 88
Сфера, 21
Точка
внутренняя, 22
предельная, 23
Шар
замкнутый, 21
открытый, 21
открытый выколотый, 21
```

### Литература

- [1] Дъяченко, М. И. Мера и интеграл / М. И. Дьяченко, П. Л. Ульянов. М.: Изд-во «Факториал», 1998.
- [2] Xалмош,  $\Pi$ . Теория меры /  $\Pi$ . Халмош. Изд-во иностранной литературы, 1953.
- [3] Колмогоров, А. Н. Элементы функционального анализа / А. Н. Колмогоров, С. В. Фомин. М.: ФИЗМАТЛИТ, 2004.
- [4] *Люстерник*, Л. А. Краткий курс функционального анализа / Л. А. Люстерник, В. И. Соболев. М.: Высш. школа, 1982.
- [5] Березанский, Ю. М. Функциональный анализ. Курс лекций / Ю. М. Березанский, Г. Ф. Ус, З. Г. Шефтель. — К.: Выща шк., 1990.
- [6] Треногин, В. А. Функциональный анализ / В. А. Треногин. М.: ФИЗМАТЛИТ, 2002.
- [7] *Федоров*, В. М. Курс функционального анализа / В. М. Федоров. Учебники для вузов. Специальная литература. СПб: «Лань», 2005.
- [8] Дороговцев, А. Я. Элементы общей теории меры и интеграла /
   А. Я. Дороговцев. К.: Выща шк., 1989.

- [9] *Богачев, В. И.* Действительный и функциональный анализ: университетский курс / В. И. Богачев, О. Г. Смолянов. Москва, Ижевск: R&C Dynamics, 2009.
- [10] *Богданский, Ю. В.* Задачи по дисциплине «Функциональный анализ» / Ю. В. Богданский, Г. Б. Подколзин, Ю. А. Чаповский. Электронная версия, Киев, 2017.
- [11] *Зорич, В. А.* Математический анализ. Часть І. / В. А. Зорич. М.: ФАЗИС, 1997.