Научись решать за несколько дней!

Практикум по теории вероятностей

Научись решать в считанные дни!



2.5.1. Равномерное распределение вероятностей


Это не только «особое», но и, пожалуй, простейшее непрерывное распределение, с помощью которого моделируются многие реальные процессы.

И самый такой распространённый пример – это график движения общественного транспорта. Предположим, что некий автобус (троллейбус / трамвай) ходит с интервалом в 10 минут, и вы в случайный момент времени подошли к остановке. Какова вероятность того, что автобус подойдёт в течение 1 минуты? Очевидно, -я. А вероятность того, что придётся ждать 4-5 минут? Тоже -я. А вероятность того, что автобус придётся ждать более 9 минут? Одна десятая!
Рассмотрим некоторый конечный промежуток, пусть для определённости это будет  отрезок . Если случайная величина  обладает постоянной плотностью распределения вероятностей на данном отрезке и нулевой плотностью вне него, то говорят, что она распределена равномерно. При этом функция плотности будет строго такой:

И в самом деле, если длина отрезка (см. чертёж) составляет , то значение  неизбежно равно  – дабы получилась единичная площадь прямоугольника, и было соблюдено известное свойство:

Проверим это свойство формально:
, ч.т.п. С вероятностной точки зрения это означает, что случайная величина  достоверно примет одно из значений отрезка …, эх, становлюсь потихоньку занудным старикашкой =)

Суть равномерности состоит в том, что какой бы внутренний промежуток фиксированной длины  мы ни рассмотрели (вспоминаем «автобусные» минуты) – вероятность того, что случайная величина  примет значение из этого промежутка будет одной и той же. На чертеже я заштриховал троечку таких вероятностей – ещё раз заостряю внимание, что они определяются площадями, а не значениями функции !

Рассмотрим типовое задание:

Задача 113
Непрерывная случайная величина  задана своей плотностью распределения:

Найти константу ,  вычислить  и составить функцию распределения.  Построить графики . Найти

Иными словами, всё, о чём только можно было мечтать :)

Решение: так как на интервале  (конечном промежутке) , то случайная величина  имеет равномерное распределение, и значение «цэ» можно отыскать по прямой формуле . Но лучше общим способом – с помощью свойства:

…почему лучше? Чтобы не было лишних вопросов ;)

Таким образом, функция плотности:

Выполним чертёж. Значения  невозможны, и поэтому жирные точки ставятся внизу:

В качестве экспресс-проверки вычислим площадь прямоугольника:
, ч.т.п.

Найдём математическое ожидание, и, наверное, вы уже догадываетесь, чему оно равно. Вспоминаем «10-минутный» автобус: если случайным образом подходить к остановке много-много дней упаси, то в среднем его придётся ждать 5 минут.

Да, именно так – матожидание должно находиться ровно посерединке «событийного» промежутка:
, как и предполагалось.

Дисперсию вычислим по формуле . И вот тут нужен глаз да глаз при вычислении интеграла:

Таким образом, дисперсия:

Составим функцию распределения . Здесь ничего нового:

1) если , то  и ;

2) если , то  и:

3) и, наконец, при , поэтому:

В результате:

Выполним чертёж:

На «живом» промежутке функция растёт линейно, и это ещё один признак, что перед нами равномерно распределённая случайная величина. Ну, ещё бы, ведь производная линейной функции – есть константа.

Вероятность попадания можно вычислить двумя способами, с помощью найденной функции распределения:

либо с помощью определённого интеграла от плотности:

Кому как нравится.

И теперь можно записать ответ, перечислив в нём все трофеи, но у меня тут закончилась страница, и поэтому обойдёмся без ответа. За его отсутствие обычно не карают, но иногда заставляют и записать, если рецензенту лень просматривать решения :)

Для вычисления  и  равномерной случайной величины существуют специальные формулы, которые я предлагаю вам вывести самостоятельно:

Задача 114
Непрерывная случайная величина  задана плотностью .

Вычислить математическое ожидание и дисперсию. Результаты максимально упростить (формулы сокращённого умножения в помощь). Полученные формулы удобно использовать для проверки, в частности, проверьте предыдущую задачу, подставив в них конкретные значения «а» и «б». И в заключение параграфа разберём парочку «текстовых» задач:
Задача 115
Цена деления шкалы измерительного прибора равна 0,2. Показания прибора округляются до ближайшего целого деления. Считая, что погрешности округлений распределены равномерно, найти вероятность того, что при очередном измерении она не превзойдёт 0,04.

Для лучшего понимания решения представим, что это какой-нибудь механический прибор со стрелкой, например, весы с ценой деления 0,2 кг, и нам предстоит взвесить кота в мешке. Но не в целях выяснить его упитанность – сейчас будет важно, ГДЕ между двумя соседними делениями остановится стрелка.

Рассмотрим случайную величину  –  расстояние стрелки от ближайшего левого деления (можно от ближайшего правого, это не принципиально).

Составим функцию плотности распределения вероятностей:

1) Так как расстояние не может быть отрицательным, то на интервале . Логично.

2) Из условия следует, что стрелка весов с равной вероятностью* может остановиться в любом месте между делениями, включая сами деления, и поэтому на промежутке :  
* Это существенное условие. Так, например, при взвешивании кусков ваты или пачек соли равномерность будет соблюдаться на куда более узких промежутках.

3) И поскольку расстояние от БЛИЖАЙШЕГО левого деления не может быть больше, чем 0,2, то при  тоже равна нулю.

Таким образом:

Теперь ответим на вопрос задачи. Когда погрешность округления до ближайшего деления не превзойдёт 0,04? Это произойдёт тогда, когда стрелка остановится не далее чем на 0,04 от левого деления справа или не далее чем на 0,04 от правого деления слева:

Осталось найти эти площади. Лучше с помощью интегралов, а не по формуле площади прямоугольника. Ибо простота здесь не всегда находит понимание ;)

По теореме сложения вероятностей несовместных событий:

 – вероятность того, что ошибка округления не превзойдёт 0,04 (40 грамм для нашего примера)

Легко понять, что максимально возможная погрешность округления составляет 0,1 (100 грамм) и поэтому вероятность того, что ошибка округления не превзойдёт 0,1  равна единице. И из этого, кстати, следует другой, более лёгкий способ решения, в котором нужно рассмотреть случайную величину   – погрешность округления до ближайшего деления. Но первый способ мне пришёл в голову первым J

Ответ: 0,4

И ещё один момент по задаче. В условии речь может идти о погрешностях не округлений, а о случайных погрешностях самих измерений,  которые, как правило (но не всегда), распределены по нормальному закону. Таким образом, всего лишь одно слово может в корне изменить решение! Будьте начеку и вникайте в смысл задач!

И коль скоро всё идёт по кругу, то ноги нас приносят на ту же остановку:

Задача 116
Автобусы некоторого маршрута идут строго по расписанию и интервалом 7 минут. Составить функцию плотности случайной величины   – времени ожидании очередного автобуса пассажиром, который наудачу подошёл к остановке. Найти вероятность того, что он будет ждать автобус не более трёх минут. Найти функцию распределения  и пояснить её содержательный смысл.

Несмотря на то, что время не может быть отрицательным, интервал  не исключается из рассмотрения, ибо противоречия тут нет – вероятность того, что случайная величина  примет невозможное значение, равна нулю.

2.5.2. Показательное распределение вероятностей

2.4.4. Как вычислить математическое ожидание и дисперсию НСВ?

| Оглавление |



Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин




© mathprofi.ru / com, 2010-2022, Высшая математика – просто и доступно!