Научись решать за несколько дней!

Практикум по теории вероятностей

Научись решать в считанные дни!



2.4.4. Как вычислить математическое ожидание и дисперсию НСВ?


Ответ на этот вопрос состоит из двух слов: с помощью интегралов.

Сам смысл математического ожидания и дисперсии мы уже разбирали ранее (но, конечно, повторим), и сейчас настало время узнать, как они определяются для непрерывной случайной величины. Всё очень просто, по аналогии с ДСВ:

Математическое ожидание непрерывной случайной величины  определяется, как несобственный интеграл:
, где  – функция плотности распределения этой случайной величины.
Дисперсия тоже имеет «знакомые очертания»:  (по определению), но в практических задачах гораздо удобнее применять формулу:
 

Как и в дискретном случае, дисперсия не может быть отрицательной!

И среднее квадратическое отклонение вычисляется точно так же:

Итак, все инструменты в руках и мы с энтузиазмом приступаем к любимому делу:

Задача 110
Непрерывная случайная величина  задана функцией

Вычислить . И построим ещё графики  и , ну а куда же без них? Повторение и ещё раз повторение!

Решение начнём как раз с графика функции распределения. При его ручном построении  удобно найти промежуточное значение  и аккуратно провести кусок кубической параболы :

Повторяем: функция распределения  описывает вероятность того, что случайная величина  примет значение, МЕНЬШЕЕ, чем переменная , «пробегающая» все значения от  до .  Данная функция изменяется в пределах  и не убывает (т. к. «накапливает» вероятности). Но если в дискретном случае она разрывна (вспоминаем «ступеньки»), то здесь – всюду непрерывна!

Очевидно, что случайная величина  принимает случайные значения из отрезка , и какие из них более вероятны, а какие – менее, наглядно показывает функция ПЛОТНОСТИ распределения вероятностей:

Найдём опорные точки параболы: , и готово:

В отличие от , функции плотности может быть разрывна и может принимать значения бОльшие единицы (как в нашем случае); может, как убывать, так и возрастать и даже иметь экстремумы (наш кусок параболы растёт). Однако (повторяем), она неотрицательна:   и обладает свойством , и это лучше всегда проверять (а то мало ли, опечатка или ошибка). Неотрицательность функции очевидна по чертежу, а вот интеграл подлежит вычислению. Используя свойство аддитивности, делим его на три части:

 – данный результат равен заштрихованной площади (см. выше) и с вероятностной точки зрения означает тот факт, что случайная величина  достоверно примет одно из значений отрезка . Причём, по чертежу хорошо видно, что значения из правой части отрезка гораздо более вероятны, чем значения слева.

И эти вероятности оцениваются кусками площади, а не значениями функции !!! (окончательно избавляемся от распространённой иллюзии)

Ради интереса вычислим:
 – вероятность того, что случайная величина  примет какое-нибудь значение из промежутка

Теперь числовые характеристики. Очевидно, что математическое ожидание (среднеожидаемое значение) случайной величины  должно находиться в «живом» отрезке , причём – ближе к его правому концу (поскольку там выше плотность вероятности).

Убедимся в этом аналитически. По формуле вычисления математического ожидания, и в силу того же свойства аддитивности:


 – ну что же, вполне и вполне правдоподобно, результат я отметил красной точкой на чертеже.

! Примечание: в общем случае (и в этом, в частности)  не делит площадь на 2 равные части!

Если промежуток конечен, то можно сразу записывать, что матожидание равно определённому интегралу:
 

Дисперсию (меру рассеяния случайных значений относительно ) вычислим по формуле:

Сначала удобно разделаться с интегралом, здесь я не буду расписывать подробно:

Таким образом:

И, наконец, среднее квадратическое отклонение:

Вот такое вот у нас получилось захватывающее повторение-изучение-исследование! И коль скоро спрашивалось немного, запишем:

ответ:

Строго говоря, ответ следовало записывать и в предыдущих задачах, но когда пунктов много, то итоговые результаты вполне допустимо помечать по ходу решения, например, подчёркивать или обводить карандашом.

Следующее задание для самостоятельного решения:

Задача 111
Дана функция:

Представить  в аналитическом виде и показать, что она может служить плотностью вероятностей случайной величины . Вычислить  и 

Справка: уравнение прямой, проходящей через точки , можно составить по формуле .
Бывает, вычисление матожидания и дисперсии сопряжено с техническими трудностями, и в соответствующей статье сайта я рассмотрел следующие функции:

Однако вся трудность этих заданий состоит в более сложных интегралах, что, собственно, уже не относится к теории вероятностей, и посему я не включил эти примеры в настоящую книгу. Но вот задачка с несобственными интегралами не помешает:

Задача 112
Непрерывная случайная величина  задана плотностью распределения вероятностей:

Найти  и . Составить функцию распределения и построить графики . Вычислить вероятность того, что случайная величина  примет значение, бОльшее, чем её математическое ожидание.

Попробуйте решить её самостоятельно! И для желающих есть более трудное задание с функцией  (смотрите опять же на сайте – ссылка выше).

Но этим всё дело не ограничивается. Точно так же, как и в дискретном случае, у непрерывной случайной величины существуют особые законы распределения вероятностей, и наиболее популярные из них мы рассмотрим прямо сейчас:

2.5.1. Равномерное распределение вероятностей

2.4.3. Функция ПЛОТНОСТИ распределения вероятностей

| Оглавление |



Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин




© mathprofi.ru / com, 2010-2022, Высшая математика – просто и доступно!