Научись решать за несколько дней!

Практикум по теории вероятностей

Научись решать в считанные дни!



2.3.3. Распределение Пуассона


Случайная величина , распределённая по этому закону, принимает бесконечное и счётное количество значений , вероятности появления которых определяются формулой:

Или, если расписать подробно:

Вспоминая разложение экспоненты в ряд, легко убедиться, что:

Математическое ожидание пуассоновской случайной величины равно  и дисперсия – тому же самому значению: .

Во всех задачах параграфа Формула Пуассона мы лишь ПОЛЬЗОВАЛИСЬ распределением Пуассона для приближенного расчёта вероятностей, в то время как ТОЧНЫЕ значения следовало находить по формуле Бернулли, т.е., там имело место биномиальное распределение. И последующие задачи отличаются принципиально
– отличие состоит в том, что сейчас речь идёт именно о РАСПРЕДЕЛЕНИИ Пуассона:

Задача 99
Случайная величина  подчинена закону Пуассона с математическим ожиданием, равным . Найти вероятность того, что данная случайная величина  примет значение, меньшее, чем её математическое ожидание.

Решение: известно, что математическое ожидание распределения Пуассона в точности равно , таким образом, случайная величина  принимает значения  с вероятностями:

Интересующее нас событие  состоит в трёх несовместных исходах: случайная величина  примет значение  или , или . По теореме сложения вероятностей несовместных событий:
  – вероятность того, что случайная величина  примет значение, меньшее, чем ее математическое ожидание.

Ответ:

Аналогичная задача на понимание:

Задача 100
Случайная величина  подчинена закону Пуассона с единичным математическим ожиданием. Найти вероятность того, что данная случайная величина примет положительное значение.

Решение и ответ в конце книги.

Помимо прочего, распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:

Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим, если он удовлетворяет условиям стационарности, отсутствия последствий и ординарности.
Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невероятно появление двух или бОльшего количества заявок. «Две старушки в дверь?» – нет уж, увольте, рубить удобнее по порядку.
Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью  заявок в некоторую единицу времени (минуту, час, день или в любой другой). Тогда вероятность того, что за данный промежуток времени, в систему поступит ровно  заявок, равна:

Поразительно, с какой скоростью устаревают задачи:

Задача 101
Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.

Решение: используем формулу Пуассона:

а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
 вызова – в среднем за одну минуту.

По теореме сложения вероятностей несовместных событий:
 – вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.

б) Вычислим среднее количество вызов за пять минут:

По формуле Пуассона:
 – вероятность того, что в течение 5 минут не будет ни одного звонка.

По теореме сложения вероятностей противоположных событий:
 – вероятность того, что в течение 5 минут будет хотя бы один вызов.

Ответ: а) , б)

Обращаю внимание, что в отличие от задач параграфа Формула Пуассона, эту задачу уже нельзя решить по формуле Бернулли. По той причине, что заранее не известно общее количество исходов  (точное количество звонков в тот или иной час).
И предсказать это значение, разумеется, невозможно.

Для самостоятельного решения:

Задача 102
Среднее число автомобилей, проходящих таможенный досмотр в течение часа, равно 3. Найти вероятность того, что: а) за 2 часа пройдут досмотр от 7 до 10 автомобилей; б) за пол часа успеет пройти досмотр только 1 автомобиль.

Таможня пройдена, достаём припрятанное:

2.3.4. Гипергеометрическое распределение вероятностей

2.3.2. Биномиальное распределение вероятностей

| Оглавление |



Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин




© mathprofi.ru / com, 2010-2022, Высшая математика – просто и доступно!