Библиотека и мини-форум сайта mathprofi.ru

Не только о математике

Блог Емелина Александра



Доступные книги по высшей математике


В различных статьях сайта я неоднократно рекомендовал различные учебники по вышмату, и в данном посте постараюсь свести рекомендации воедино. Более того, хотелось бы превратить эту страницу в полноценный каталог доступных книг и лекций по высшей математике – с вашей помощью, поскольку многие из них, скорее всего, просто не попали в поле моего зрения.

Первое, и самое ценное

В условиях дефицита «вменяемой» учебной литературы важнейшим источником информации становятся ваши собственные записи лекций. Ваши. Собственноручные. Когда я рассказывал о системности очного образования, то советовал посещать максимальное количество лекций, и сейчас немного остановлюсь на технической стороне вопроса. Старайтесь оформлять свои конспекты как можно качественнее – как минимум, разборчиво и достаточно пОлно. В течение ближайших дней записи полезно перечитать, при этом не нужно ставить перед собой идеалистической цели «во всём разобраться и всё запомнить». Если вы хоть что-то дополнительно поняли, если вспомнили и пометили какие-то важные моменты, если осознали второстепенные, то это уже хороший результат, даже отличный ;)

Это, кстати, касается не только «технических», но и гуманитарных предметов. С тем отличием, что там проблема противоположная – можно утонуть в море информации, и то, что «размазано» по 100 страницам 10 учебников, порой, умещается в 2-3 строчки конспекта. Вы знаете, где философия Гегеля занимает половину печатной страницы? Вы видели много таких книг? Я встретил только одну: сталинский философский словарь. Всё коротко, всё чётко, ВСЁ ПОНЯТНО, и, главное, ничего не смешано с пропагандой: сначала излагается суть философии, её тезисы, и только затем обосновывается, что она «ложна и антинаучна».

И как ни странно, первое, на что нужно обратить внимание при выборе литературы – это год выпуска. Если учебник издан в 70-х годах XX века и ранее, то к нему уже стОит присмотреться. Это лучшие традиции советской педагогической школы, которые выдержаны, в частности, в упомянутом выше словаре. Далее педагогика начала деградировать – учебники (не все, конечно), в том числе школьные, стали становиться всё более «водяными» и наукообразными, и всё менее и менее понятными.

Со школьной литературы и начнём, среди моих читателей немало учащихся старших классов, да и школьный материал ведь многие позабыли.

Поехали:

1) Если у вас пробелы или проблемы в понимании элементарной математики, то однозначно рекомендую учебники А. П. Киселёва, тут без комментариев – это целая эпоха и можно сказать легенда отечественного математического образования. Кроме того, (как по мне) неплох учебник по геометрии Л.С. Атанасяна, который выдержал более 20 переизданий; я сам учился по этому учебнику, и он оставил хорошие впечатления

2) Письменный Д. Т. Конспект лекций по высшей математике: полный курс. По неоднократным отзывам посетителей сайта, доходчивый и лаконичный источник. Признаться, просмотрел его «по диагонали», но, судя по всему, книга оправдывает свою репутацию. Если у вас есть какое-либо мнение по поводу этого конспекта – обязательно оставьте его в комментариях!

3) Краснов М. Л., Киселев А. И., Макаренко Г. И. и др. Решебники по различным разделам высшей математики. Лично пользовался «Дифференциальными уравнениями» и «Функциями комплексного переменного», и признаЮ, что содержание действительно соответствует заявленной миссии: в книгах кратко излагается теория и достаточно подробно объясняются решения. Однако начинающим будет понятно далеко не всё, и я напоминаю, что у вас есть я :)  

4) Атанасян Л. С., Базылев В. Т. Геометрия в 2 томахУчебник для педагогических вузов. По роду своей профессиональной подготовки мне известен именно этот учебник, в частности, чтобы освоить аналитическую геометрию – хватит «за глаза и за уши». Хотя наверняка существуют и другие, более простые учебники, пишите, если вам таковые известны!

5) Математический анализ. Мой любимый раздел высшей математики, по которому могу посоветовать сразу несколько источников.

Попроще:

Бохан К. А. Курс математического анализа, 2 тома – учебник для заочников педагогических вузов;

Пискунов Н. С. Дифференциальное и интегральное исчисления для втузов, 2 тома.

Посложнее:

Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления, 3 тома – развёрнутый курс с многочисленными примерами и типично «матановской» лексикой.

Посолиднее:

Ильин В. А., Садовничий В. А. Математический анализ, 2 тома, издательство МГУ – более обстоятельный источник с научным стилем изложения, в котором рассматриваются моменты, умалчиваемые в других книгах.

Выбирайте по уровню подготовки и потребностям!

Кстати, как определить, доступная вам попалась книга, или нет?

Очень просто – если вы её «как открыли, так и закрыли», то, увы – это «не ваша» книга. Разумный принцип, экономящий массу времени.

6) Гмурман В. Е. Теория вероятностей и математическая статистика, учебное пособие. Вот тут лучше отыскать более поздние переиздания, т.к. в них добавлено значительное количество дополнительных и актуальных материалов.

Гмурман В. Е. Руководство к решению задач по теории вероятностей и математической статистике – решебник и задачник.

Снимаю свою несуществующую шляпу, объяснить тервер проще – очень сложно.

7) Приглашаю всех желающих дополнить список в комментариях!

…да, а где алгебра и математическая логика? – спрОсите вы. А это тот случай, когда мне как раз хватило своих институтских лекций! – ещё раз подчёркиваю важность данного источника.

Спасибо за ваш вклад в развитие проекта! 

Автор: Александр Емелин



Не только о математике >>> (к списку статей блога)




© Емелин Александр, Блог об учёбе, карьере и не только